
1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CST201 DATA STRUCTURES

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, Web

Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by

learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

4

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

CO1
Design an algorithm for a computational task and calculate and analyze the time/space

complexities of that algorithm.

CO2
Identify and Use appropriate data structures like arrays,linked list,stacks and queues to

solve computational problems efficiently.

CO3
Categorize different memory management techniques and the implementations of linear

datastructures.

CO4
Represent and manipulate data using nonlinear data structures like trees and graphs to

design algorithms for various applications.

CO5
Illustrate and understand various techniques for searching ,sorting and hashing algorithms

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

CO1 3 3 3 2 2 - - - - - - 2

CO2 3 3 3 2 3 - - - - - - 2

CO3 3 3 3 2 3 - - - - - - 2

CO4 3 3 3 2 2 - - - - - - 2

CO5 3 3 2 3 - - - - - - 2

5

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PSO

1

PSO

2

PSO

3

CO1
3 3 2

CO2
2 3 3

CO3
- 3 2

CO4
- 3 -

CO5
3 - -

6

SYLLABUS

7

8

9

10

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

1 Solve the given code to find time

complexity .

for(i=;i<=n;i++)

for(j=1;j<=n;j++)

x=x+1;

CO1 K3

2 Compare Big-O notation and theta

notation explain.

CO1 K4

3 Illustrate system life cycle. CO1 K3

4 Solve the problem to find the biggest

number among three numbers with the

help of an algorithm.

CO1 K3

5 Discuss Top-down and Bottom-up

approach in algorithm analysis.
CO1 K2

6 Solve the given problem to check whether

the number is odd or even and factorial of

a given number with an algorithm

CO1 K3

7 Compare Big-theta and omega notation

and explain.

CO1 K4

8 Illustrate algorithm analysis with an

example.

CO1 K3

11

MODULE II

1 Solve the given expression to find its

corresponding prefix form

A*B+C

CO2 K3

2 Use an algorithm to perform push and pop

operation in a stack .

CO2 K3

3 Solve the given post fix expression 2 3 1

* + 9 – using stack.

CO2 K3

4 Compare Stack and Queue CO2 K4

5 Explain stack and perform its operations

using algorithm.

CO2 K5

6 Give Enqueue and dequeue operation of

queue with its algorithm.

CO2 K2

7 Solve the given expression using stack 53

+62 / * 35 * +

CO2 K3

8 Summarize an algorithm to perform

insertion and deletion operations of a

circular
queue.

CO2 K2

9 Give the algorithm of Linear Search and

Binary search and Compute the time

complexity of both.

CO2 K2

MODULE III

1 Write short note on dynamic memory

allocation.

CO3 K3

12

2 Write brief note on memory allocation

schemes in operating system.

CO3 K6

3 Explain deletion of node in circular linked

list with an example.

CO3 K5

4 Explain best fit memory allocation

scheme with an example.

CO3 K2

5 Design a program to perform insertion of

a node in singly linked list with an

example.

CO3 K6

6 Explain the implementation of stack

using linked list.

CO3 K5

7 Explain the concept of worst fit with an

example.

CO3 K2

8 Create a program to implement deletion of

a node in doubly linked list with an

example.

CO3 K6

9 Explain the implementation of queue

using linked list.

CO3 K5

MODULE IV

1 Point out the applications of tree. CO4 K4

13

2 Explain the insertion of nodes 50, 30, 80,

75, 40, 35, 60 in a binary search tree in

detail.

CO4 K2

3 Explain briefly about tree traversals in a

binary search tree with example.

CO4 K5

4 Write short note on depth first search

with an example.

CO4 K6

5 List out the different types of trees with

example.

CO4 K4

6 Explain the concept of pre-order and post-

order traversal with an example.

CO4 K2

7 Design an algorithm and program for

insertion of nodes in a binary search tree.

CO4 K6

8 Write a brief note on breadth first search

with an example.

CO4 K6

9 Explain briefly different terminologies in

tree.

CO4 K2

10 Differentiate between binary tree and

binary search tree with an example.

CO4 K4

11 Design an algorithm and program for

searching of nodes in a binary search tree.

CO4 K6

12 Differentiate between depth first search

and breadth first search with an example.

CO4 K4

MODULE V

1 Explain the concept of insertion sort. CO5 K2

14

2 Describe hashing in detail. CO5 K2

3 Explain selection sort with an example. CO5 K5

4 Write short note on collision resolution in

detail.

CO5 K6

5 Illustrate the concept of selection sort. CO5 K3

6 Briefly describe mid square method in

detail.

CO5 K2

7 Explain insertion sort with an example. CO5 K5

8 Differentiate between division and folding

method in detail.

CO5 K4

9 Describe the concept of merge sort with an

example.

CO5 K2

10 Explain overflow handling in detail. CO5 K2

11 Explain merge sort with an example. CO5 K5

12 Write brief note on hashing functions in

detail.

CO5 K6

15

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

SL.

NO.

TOPIC

1
AVL Tree

2
B Tree and B+ Tree

16

Module 1: Basic Concepts of Data Structures

System Life Cycle, Algorithms, Performance Analysis, Space Complexity, Time Complexity,

Asymptotic Notation, Complexity Calculation of Simple Algorithms.

SYSTEM LIFE CYCLE (SLC)

 Good programmers regard large scale computer programs as systems that contain many

complex interacting parts. (Systems: Large Scale Computer Programs.)

 As systems, these programs undergo a development process called System life cycle.(SLC

: Development Process of Programs)

Different Phases of System Life Cycle

1. Requirements

2. Analysis

3. Design

4. Refinement and coding

5. Verification

1. Requirement Phase:

 All programming projects begin with a set of specifications that defines the purpose of

that program.

 Requirements describe the information that the programmers are given (input) and the

results (output) that must be produced.

 Frequently the initial specifications are defined vaguely and we must develop rigorous

input and output descriptions that include all cases.

2. Analysis Phase

 In this phase the problem is break down into manageable pieces.

 There are two approaches to analysis:-bottom up and top down.

 Bottom up approach is an older, unstructured strategy that places an early emphasis on

coding fine points. Since the programmer does not have a master plan for the project, the

resulting program frequently has many loosely connected, error ridden segments.

 Top down approach is a structured approach divide the program into manageable segments.

17

 This phase generates diagrams that are used to design the system.

 Several alternate solutions to the programming problem are developed and compared

during this phase

3. Design Phase

 This phase continues the work done in the analysis phase.

 The designer approaches the system from the perspectives of both data objects that the

program needs and the operations performed on them.

 The first perspective leads to the creation of abstract data types while the second requires

the specification of algorithms and a consideration of algorithm design strategies.

Ex: Designing a scheduling system for university

Data objects: Students, courses, professors etc

Operations: insert, remove search etc

ie. We might add a course to the list of university courses, search for the courses taught

by some professor etc.

 Since abstract data types and algorithm specifications are language independent.

 We must specify the information required for each data object and ignore coding details.

Ex: Student object should include name, phone number, social security number etc.

4. Refinement and Coding Phase

 In this phase we choose representations for data objects and write algorithms for each

operation on them.

 Data objects representation can determine the efficiency of the algorithm related to it. So

we should write algorithms that are independent of data objects first.

 Frequently we realize that we could have created a much better system. (May be we realize

that one of our alternate design is superior than this). If our original design is good, it can

absorb changes easily.

5. Verification Phase

 This phase consists of

 developing correctness proofs for the program

18

 Testing the program with a variety of input data.

 Removing errors.

 Correctness of Proofs

 Programs can be proven correct using proofs.(like mathematics theorem)

 Proofs are very time consuming and difficult to develop for large projects.

 Scheduling constraints prevent the development of complete sets of proofs for a

larger system.

 However, selecting algorithm that have been proven correct can reduce the number

of errors.

 Testing

 Testing can be done only after coding.

 Testing requires working code and set of test data.

 Test data should be chosen carefully so that it includes all possible scenarios.

 Good test data should verify that every piece of code runs correctly.

 For example if our program contains a switch statement, our test data should be

chosen so that we can check each case within switch statement.

Error Removal

 If done properly, the correctness of proofs and system test will indicate erroneous

code.

 Removal of errors depends on the design and code.

 While debugging large undocumented program written in ‘spaghetti’ code, each

corrected error possibly generates several new errors.

 Debugging a well documented program that is divided into autonomous units that

interact through parameters is far easier. This especially true if each unit is tested

separately and then integrated into system.

ALGORITHMS

19

Definition: An algorithm is a finite set of instructions to accomplish a particular task. In addition,

all algorithms must satisfy the following criteria:

(1) Input. There are zero or more quantities that are externally supplied.

(2) Output. At least one quantity is produced.

(3) Definiteness. Each instruction is clear and unambiguous.

(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases, the algorithm

terminates after a finite number of steps.

(5) Effectiveness. Every instruction must be basic enough to be carried out, in principle, by a

person using only pencil and paper. It is not enough that each operation be definite as in (3); it

also must be feasible.

We can describe algorithm in many ways

1. We can use a natural language like English

2. Graphical Representation called flow chart, but they work well only if the algorithm is

small and simple.

Translating a Problem into an Algorithm

Example [Selection sort]: Suppose we must devise an algorithm that sorts a collection of n > 1

elements of arbitrary type. A simple solution is given by the following

[Selection Sort: In each pass of the selection sort, the smallest element is selected from the

unsorted list and exchanged with the elements at the beginning of the unsorted list]

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first position

where 14 is stored presently, we search the whole list and find that 10 is the lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value in the

list, appears in the first position of the sorted list.

20

For the second position, where 33 is residing, we start scanning the rest of the list in a linear

manner.

We find that 14 is the second lowest value in the list and it should appear at the second place. We

swap these values.

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process −

 From those elements that are currently unsorted, find the smallest and place it next in the sorted

list

 We assume that the elements are stored in an array ‘list’, such that the ith integer is stored in

the ith Position list[i], 0 <= i <n

 Algorithm 1.1 is our first attempt to deriving a solution

21

 1.1 Selection sort algorithm

 We are written this partially in C and partially in English

 To turn the program 1.1 into a real C program, two clearly defined sub tasks are remain:

finding the smallest integer and interchanging it with list[i].

 We can solve this by using a function

 1.2 Swap Function

 To swap their values one could call swap(&a, &b)

 We can solve the first subtask by assuming that the minimum is the list[i]. Checking list[i] with

list[i+1], list[i+2]……,list[n-1]. Whenever we find a smaller number we make it as the

minimum. We reach list[n-1] we are finished.

#include <stdio.h>

int main()

{

 int a[100], n, i, j, position, swap;

 printf("Enter number of elements");

 scanf("%d", &n);

 printf("Enter %d Numbersn", n);

 for (i = 0; i < n; i++)

 scanf("%d", &a[i]);

 for(i = 0; i < n - 1; i++)

 {

 position=i;

22

 for(j = i + 1; j < n; j++)

 {

 if(a[position] > a[j])

 position=j;

 }

 if(position != i)

 {

 swap=a[i];

 a[i]=a[position];

 a[position]=swap;

 }

 }

 printf("Sorted Array:n");

 for(i = 0; i < n; i++)

 printf("%dn", a[i]);

 return 0;

}

• Correctness Proof

23

24

Recursive Algorithm

 An algorithm is said to be recursive if the same algorithm is invoked in the body.

 An algorithm that calls itself is direct recursive.

 Algorithm A is said to be indirect recursive if it calls another algorithm which in turn calls

A.

25

 These recursive mechanisms are extremely powerful, but even more importantly; many

times they can express an otherwise complex process very clearly.

PERFORMANCE ANALYSIS

An algorithm is said to be efficient and fast, if it takes less time to execute & consume less

memory space

Performance is analyzed based on 2 criteria

1. Space Complexity

2. Time Complexity

1. Space Complexity

 Analysis of space complexity of an algorithm or program is the amount of memory it

needs to run to completion.

 The space needed by a program consists of following components.

 Fixed space requirements: Independent on the number and size of the programs

input and output. It include

 Instruction Space (Space needed to store the code)

 Space for simple variable

 Space for constants

26

 Variable space requirements: This component consists of

 Space needed by structured variable whose size depends on the particular

instance I of the problem being solved

 Space required when a function uses recursion

 Total Space Complexity S(P) of a program is

S(P) = C + Sp(I)

Here Sp(I) is Variable space requirements of program P working on an instance I.

 C is a constant representing the fixed space requirements

 Example :

1. int sum(int A[], int n)

{

 int sum=0, i;

 for(i=0;i<n;i++)

 {

 Sum=sum+A[i];

 return sum;

 }

}

Here Space needed for variable n = 1 byte

 Sum = 1 byte

 i = 1 byte

 Array A[i] = n byte

 Total Space complexity = [n+3] byte

2. void main()

{

 int x,y,z,sum;

 printf(“Enter 3 numbers”);

 scanf(“%d%d%d”,&x,&y,&z);

 sum = x+y+z;

27

 printf(“The sum = %d”,sum);

}

Here Space needed for variable x = 1 byte

 y = 1 byte

 z = 1 byte

 sum = 1 byte

 Total Space complexity = 4 byte

3. sum (a,n)

{

 int s=0;

 for(i=0;i<n;i++)

 for(j=0;j<m;j++)

 s=s+a[i][j];

 return s;

}

Here Space needed for variable n = 1 byte

 m = 1 byte

 s = 1 byte

 i = 1 byte

 j = 1 byte

 Array a[i][j] = nm byte

 Total Space complexity = nm+5 byte

2. Time Complexity

 The time complexity of an algorithm or a program is the amount of time it needs to run

to completion.

 T(P)=C +TP

Here C is compile time

 Tp is Runtime

 For calculating the time complexity, we use a method called Frequency Count ie, counting

the number of steps

28

 Comments – 0 step

 Assignment statement – 1 Step

 Conditional statement – 1 Step

 Loop condition for ‘n’ numbers – n+1 Step

 Body of the loop – n step

 Return statement – 1 Step

 Examples:

29

3. Iterative function for summing a list of numbers

Tabular Method

s/e =steps/execution

4. Recursive summing of a list of numbers

Statement s/e Frequency Total steps

float sum(float list[], int n)

{

 float tempsum = 0;

 int i;

 for(i=0; i <n; i++)

tempsum += list[i];

 return tempsum;

}

0 0 0

0 0 0

1 1 1

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+3

30

Tabular Method

 When we analyze an algorithm it depends on the input data, there are three cases :

a. Best case: The best case is the minimum number of steps that can be executed for the

given parameters.

b. Average case: The average case is the average number of steps executed on instances

with the given parameters.

c. Worst case: In the worst case, is the maximum number of steps that can be executed

for the given parameters

ASYMPTOTIC NOTATION

 Complexity of an algorithm is usually a function of n.

 Behavior of this function is usually expressed in terms of one or more standard functions.

 Expressing the complexity function with reference to other known functions is called

asymptotic complexity.

 Three basic notations are used to express the asymptotic complexity

Statement s/e Frequency Total steps

float rsum(float list[], int n)

{

 if (n)

 return rsum(list, n-1)+list[n-1];

 return list[0];

}

0 0 0

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+2

31

1. Big – Oh notation O : Upper bound of the algorithm

2. Big – Omega notation Ω : Lower bound of the algorithm

3. Big – Theta notation Θ : Average bound of the algorithm

1. Big – Oh notation O

 Formal method of expressing the upper bound of an algorithm’s running time.

 i.e. it is a measure of longest amount of time it could possibly take for an algorithm

to complete.

 It is used to represent the worst case complexity.

 f(n) = O(g(n)) if and only if there are two positive constants c and n0 such that

f(n) ≤ c g(n) for all n ≥ n0 .

 Then we say that “f(n) is big-O of g(n)”.

 Examples:

1. Derive the Big – Oh notation for f(n) = 2n + 3

Ans:

2n + 3 <= 2n+3n

2n+3 <= 5n for all n>=1

Here c = 5

 g(n) = n

so, f(n) = O(n)

2. Big – Omega notation Ω

 f(n) = Ω(g(n)) if and only if there are two positive constants c and n0 such that

32

f(n) ≥ c g(n) for all n ≥ n0.

 Then we say that “f(n) is omega of g(n)”.

 Examples:

Derive the Big – Omega notation for f(n) = 2n + 3

Ans:

2n + 3 >= 1n for all n>=1

Here c = 1

 g(n) = n

so, f(n) = Ω (n)

3. Big – Theta notation Θ

 f(n) = Θ(g(n)) if and only if there are three positive constants c1, c2 and n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 .

 Then we say that “f(n) is theta of g(n)”.

 Examples:

Derive the Big – Theta notation for f(n) = 2n + 3

Ans:

1n <= 2n + 3 <= 5n for all n>=1

Here c1 = 1

 C2 = 5

 g1(n) and g2(n) = n

so, f(n) = Θ (n)

33

34

35

TIME COMPLEXITY OF LINEAR SEARCH

 Any algorithm is analyzed based on the unit of computation it performs. For linear

search, we need to count the number of comparisons performed, but each comparison

may or may not search the desired item.

36

TIME COMPLEXITY OF BINARY SEARCH

 In Binary search algorithm, the target key is examined in a sorted sequence and this

algorithm starts searching with the middle item of the sorted sequence.

a. If the middle item is the target value, then the search item is found and it returns

True.

b. If the target item < middle item, then search for the target value in the first half

of the list.

c. If the target item > middle item, then search for the target value in the second half

of the list.

 In binary search as the list is ordered, so we can eliminate half of the values in the list

in each iteration.

 Consider an example, suppose we want to search 10 in a sorted array of elements, then

we first determine 15 the middle element of the array. As the middle item contains 18,

which is greater than the target value 10, so can discard the second half of the list and

repeat the process to first half of the array. This process is repeated until the desired

target item is located in the list. If the item is found then it returns True, otherwise False.

 In Binary Search, each comparison eliminates about half of the items from the list.

Consider a list with n items, then about n/2 items will be eliminated after first

comparison. After second comparison, n/4 items of the list will be eliminated. If this

process is repeated for several times, then there will be just one item left in the list. The

number of comparisons required to reach to this point is n/2i = 1. If we solve for i, then

it gives us i = log2 n. The maximum number is comparison is logarithmic in nature,

hence the time complexity of binary search is O(log n).

37

MODULE 2 - ARRAYS AND SEARCHING

Polynomial representation using Arrays, Sparse matrix, Stacks, Queues - Circular Queues, Priority

Queues, Double Ended Queues, Evaluation of Expressions, Linear Search and Binary Search

DATA STRUCTURE

It is a representation of logical relationship between individual elements of data. It is also defined

as a mathematical model of particular organization of data items. It is also called building block

of a program.

Classification of data structure

1. Linear data structure

 All the elements form a sequence or maintain a linear ordering.

2. Non linear data structure

 Elements are distributed over a plane.

38

1. POLYNOMIAL REPRESENTATION USING ARRAYS

 A polynomial is a sum of terms where each term has the form axe ,

Where x is the variable, a is the coefficient and e is the exponent.

Polynomial representation using Arrays

39

Polynomial Addition Example

40

Steps of Polynomial Addition

2. SPARSE MATRIX

 A matrix is a two-dimensional data object made of ‘m’ rows and ‘n’ columns, therefore

having total m x n values. If most of the elements of the matrix have 0 values, then it is

called a sparse matrix.

 Sparse matrix is a matrix which contains very few non-zero elements.

41

 When a sparse matrix is represented with a 2-dimensional array, we waste a lot of space to

represent that matrix.

 Consider a matrix of size 100 X 100 containing only 10 non-zero elements. In this matrix,

only 10 spaces are filled with non-zero values and remaining spaces of the matrix are filled

with zero. Totally we allocate 100 X 100 X 2 = 20000 bytes of space to store this integer

matrix. To access these 10 non-zero elements we have to make scanning for 10000 times.

 Sparse Matrix Representations can be done in many ways following are two common

representations:

1. Array representation

42

 Three tuple form

2. Linked list representation

 2D array is used to represent a sparse matrix in which there are three columns named as

 Row:Index of row, where non-zero element is located

 Column:Index of column, where non-zero element is located

 Value:Value of the non zero element located at index –(row,column)

43

44

Triplets

(0,2,3)

(0,4,4)

(1,2,5)

(1,3,7)

(3,1,2)

(3,2,6)

Why to use Sparse Matrix instead of simple matrix ?

 Storage: There are lesser non-zero elements than zeros and thus lesser memory can be

used to store only those elements.

 Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements.

45

3. STACK

 It is a linear data structure in which elements are placed one above another.

 A stack is an ordered collection of homogeneous data elements where the insertion and

deletion operations take place only at one end called Top of the stack.

 LIFO - In stack elements are arranged in Last-In-First-Out manner (LIFO). So it is also

called LIFO lists.

 Anything added to the stack goes on the “top” of the stack.

 Anything removed from the stack is taken from the “top” of the stack.

 Things are removed in the reverse order from that in which they were inserted

Operations of Stack

 Two basic operations of stack:

 PUSH : Insert an element at the top of stack

 POP: Delete an element from the top of stack

 An element in the stack is termed as ITEM.

 Initially top is set to -1, to indicate an empty stack. (Top = -1)

46

 The maximum no. of elements that a stack can accommodate is termed MAX_SIZE.

 If stack is full Top = MAX_SIZE - 1

Array representation of stack

 Stack can be represented using a linear array.

 There is a pointer called TOP to indicate the top of the stack

 top

 Overflow: If we try to insert a new element in the stack top (push) which is already full,

then the situation is called stack overflow.

 Underflow: If we try to delete an element (pop) from an empty stack, the situation is called

stack underflow.

Basic Operations

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

 peek() − get the top data element of the stack, without removing it.

int peek() {

 return stack[top];

 }

 isFull() − check if stack is full.

bool isfull() {

 if (top == MAX_SIZE)

return true;

 else

 return false;

aaa bbb ccc ddd

0 1 2 3 4 5

3

47

 }

 isEmpty() − check if stack is empty.

bool isempty() {

 if(top == -1)

 return true;

 else

 return false;

 }

Algorithm: PUSH()

 Let A be an array with Maximum size as MAX_SIZE. Initially, top= -1

POP Operation

1. Start

2. if top < MAX_SIZE – 1

3. set top=top+1

4. Set A[top]=item

5. else

6. print “OVERFLOW”

7. exit

48

Algorithm: POP()

Applications of stack

 Reversing an array

 A B C D

 Pushing to stack A B C D

 Popping from stack D C B A

 Undo operations

 Infix to prefix, infix to postfix conversion

1. Start

2. if top= -1 then

3. print “UNDERFLOW”

4. else

5. set item=A[top]

6. Set top=top-1

7. exit

49

 Tree Traversal

 Evaluation of postfix expressions

4. QUEUES

 A queue is an ordered collection of homogeneous data elements. In which insertion is done

at one end called REAR and deletion is done at another end called FRONT.

 FIFO - In queue elements are arranged in First-In-First-Out manner (FIFO).

 First inserted element is removed first

 Two basic operations of queue:

1. Enqueue -> Insert an element at the rear end of queue.

2. Dequeue-> Delete an element from the front end of queue.

 Initial case rear = -1 and front = 0, MAX SIZE is the size of the queue.

 If rear = front then queue contains only a single element

 If rear < front then queue is empty

 Queue full : rear = n-1 and front =0

 Whenever an element is deleted from the queue, the value of FRONT is increased by 1.

 i.e. FRONT=FRONT+1

 Similarly, whenever an element is added to the queue, the REAR is incremented by 1 as,

 REAR=REAR+1

Array Representation of Queue

50

Basic Operations

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

 peek() − Gets the element at the front of the queue without removing it.

int peek()

{

 return queue[front];

}

 isfull() − Checks if the queue is full

bool isfull()

{

 If (rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

 isempty() − Checks if the queue is empty.

 bool isempty()

 {

if(front < 0 || front > rear)

return true;

else

return false;

}

51

Algorithm : Enqueue

1. Start

2. if rear = MAX_SIZE – 1 then

3. print “OVERFLOW”

4. else

5. set rear = rear + 1

6. Set A[rear]=item

7. exit

52

Algorithm : Dequeue

Type of Queues

 Circular Queue

 Priority Queue

 Doubly ended Queue

1. Start

2. if rear < front then

3. print “UNDER FLOW”

4. else

5. set item = A[front}

6. set front = front + 1

7. exit

53

5. CIRCULAR QUEUE

 To utilize space properly, circular queue is derived.

 In this queue the elements are inserted in circular manner.

 So that no space is wasted at all.

 Circular queue empty:

FRONT= -1

REAR= -1

 Circular queue full:

(rear + 1) % max_size = Front

 It is a modification of simple queue in which the rear pointer is set to the initial location,

whenever it reaches the location max_size – 1.

Insertion Algorithm (ENQUEUE)

1. if (front == -1 & rear == -1)

2. set front =0 and rear = 0

3. Set a[rear]=item

4. else if (front = (rear+1) % max_size) then

5. Print over flow

6. else

7. set rear = (rear + 1)% max_size

8. Set a[rear] = item

9. Exit

54

Deletion Algorithm (DEQUEUE)

7. PRIORITY QUEUE

 Regular queue follows a First In First Out (FIFO) order to insert and remove an item.

Whatever goes in first, comes out first.

 In a priority queue, an item with the highest priority comes out first.

 Therefore, the FIFO pattern is no longer valid.

 Every item in the priority queue is associated with a priority.

 It does not matter in which order we insert the items in the queue

 The item with higher priority must be removed before the item with the lower priority.

 If two elements have the same priority, they are served according to their order in the queue.

Operations on a priority queue

1. EnQueue: EnQueue operation inserts an item into the queue. The item can be inserted

at the end of the queue or at the front of the queue or at the middle. The item must have

a priority.

2. DeQueue: DeQueue operation removes the item with the highest priority from the

queue.

3. Peek: Peek operation reads the item with the highest priority.

1. if front = -1 and rear = -1 then

2. print underflow and exit

3. else if front = rear

4. set item= a[front]

5. set front = -1 and rear = -1

6. else

7. set item= a[front]

8. set front = (front + 1) % max_size

9. Exit

10. Exit

55

1. Enqueue Operation

1. IF((Front == 0)&&(Rear == N-1))

2. PRINT “Overflow Condition”

3. Else IF(Front == -1& rear == -1)

4. Front = Rear =0

5. Queue[Rear] = Data

6. Priority[Rear] = Priority

7. ELSE IF(Rear ==N-1)

8. FOR (i=Front;i<=Rear;i++)

9. FOR(i=Front;i<=Rear;i++)

10. Q[i-Front] =Q[i]

11. Pr[i-Front] = Pr[i]

12. Rear = Rear-Front

13. Front = 0

14. FOR(i = r;i>f;i–)

15. IF(p>Pr[i])

16. Q[i+1] = Q[i] Pr[i+1] = Pr[i]

17. ELSE

18. Q[i+1] = data Pr[i+1] = p

19. Rear++.

2. Dequeue operation

1. IF(Front == -1)

2. PRINT “Queue Under flow condition”

3. ELSE

4. PRINT”Q[f],Pr[f]”

5. IF(Front==Rear)

6. Front = Rear = -1

7. ELSE

8. FRONT++

56

Applications of Priority Queue

1. CPU Scheduling

2. Graph algorithms like Dijkstra’s shortest path algorithm, Prim’s Minimum Spanning

Tree, etc

3. All queue applications where priority is involved.

4. For load balancing and interrupt handling in an operating system

8. DOUBLY ENDED QUEUE

It is a list of elements in which insertion and deletion are perform at both ends

 It has 4 operations

1. Insertion at rear end

2. Insertion at front end

3. Deletion at rear end

4. Deletion at front end

1. Algorithm : Insertion at rear end

1. Start

2. if rear = MAX_SIZE – 1 then

3. print “OVERFLOW”

4. Else

5. set rear = rear + 1

6. Set A[rear]=item

7. exit

57

2. Insertion at front end

3. Deletion at front end

4. Deletion at rear end

1. Start

2. if front = 0 then

3. print “OVERFLOW” and exit

4. Else

5. set front = front - 1

6. Set A[front]=item

7. exit

1. Start

2. if front = 0 and rear = -1 then

3. print “UNDER FLOW” and exit

4. set item = A[front]

5. if front = rear then

6. set front = 0 and rear = -1

7. Else set front = front + 1

8. exit

1. Start

2. if front = 0 and rear = -1 then

3. print “UNDER FLOW” and exit

4. set item = A[rear]

5. if front = rear then

6. set front = 0 and rear = -1

7. Else set rear = rear - 1

8. exit

58

9. CONVERSION & EVALUATION OF EXPRESSIONS

 Infix Expression: The operator occurs between the operands

<operand> <operator> <operand>

Eg: a+b

 Prefix Expression (Polish notation): The operators occurs before the operand

<operator> <operand> <operand>

Eg : +ab

 Postfix Expression (Reverse Polish notation): The operators occurs after the operand

<operand> <operand> <operator>

Eg : ab+

59

60

61

62

A. Postfix Expression Evaluation

Given P is the postfix expression, the following algorithm uses a stack to hold operands. It

finds the value of the arithmetic expression P, Written in postfix notation.

Algorithm:

Step 1: Add “) “ at the end of P

Step 2: Scan P from left – right & repeat the steps 3 & 4

Step 3: If an operand occurs, PUSH it to stack.

Step 4: If an operator occurs, then

 A: Remove the top elements of the stack.

 When A is the top element and B is the next top element

B: Evaluate B A

C: Place the result of step B back to stack

Step 5: Set the value equals to TOP element of the stack.

63

1. Evaluate the expression 5 * (6 + 2) – 12 / 4

Ans : Convert to postfix notation

 5 * 6 2 + - 12 / 4

 5 6 2 + * - 12 4 /

 = 5 6 2 + * 12 4 / -

 Add “) “ at the end of P

 P = 5 6 2 + * 12 4 / -)

2. Evaluate the expression (6 +

2) / (4 – 2 * 1)

Ans: Convert to postfix notation

 6 2 + / (4 – 2 1 *)

 6 2 + / 4 2 1 * -

 6 2 + 4 2 1 * - /

P = 6 2 + 4 2 1 * - /)

Scanned Symbol Stack

5 5

6 5, 6

2 5, 6, 2

+ 5, 8

* 40

12 40, 12

4 40, 12, 4

/ 40, 3

- 37

Scanned Symbol Stack

64

B. Infix to Postfix

conversion

Here the operators used

are ^ , * , / , + , -. The

following algorithm

converts an Infix

expression Q to postfix

expression P. This

algorithm also uses a

stack which holds the left parenthesis and operators. We begin by pushing a Left

parenthesis to stack and adding a right parenthesis at the end of Q.

Algorithm

Step 1: PUSH left parenthesis “(“ into stack and add right parenthesis “) ” at the end of

Q.

Step 2: Scan the expression Q from Left – Right and repeat the step 3 to 6 for each element

of Q until this stack is empty.

Step 3: If an operand occurs add it to P.

Step 4: If a Left parenthesis occurs then PUSH it to stack

Step 5: If an operator occurs then

 A: Repeatedly POP the stack and add to P, each operator which has same or higher

precedence than

 B: add to stack

Step 6: If a Right parenthesis occurs then

 A: Repeatedly POP from stack and add to P each operator until a left parenthesis

occurs.

6 6

2 6 2

+ 8

4 8 4

2 8 4 2

1 8 4 2 1

* 8 4 2

- 8 2

/ 4

65

 B: Remove the left parenthesis

Step 7: Exit

1. Q = A + (B * C - (D / E ^ F) * G) * H

Ans : Add right parenthesis at the end of the expression

Q = A + (B * C - (D / E ^ F) * G) * H)

Symbol Scanned Stack p

 (

A (A

+ (+ A

((+ (A

B (+ (AB

* (+ (* AB

C (+ (* ABC

- (+ (- ABC*

((+ (- (ABC*

D (+ (- (ABC*D

/ (+ (- (/ ABC*D

E (+ (- (/ ABC*DE

^ (+ (- (/ ^ ABC*DE

F (+ (- (/ ^ ABC*DEF

66

) (+ (- ABC*DEF ^ /

* (+ (- * ABC*DEF ^ /

G (+ (- * ABC*DEF ^ /G

) (+ ABC*DEF ^ /G * -

* (+ * ABC*DEF ^ /G * -

H (+ * ABC*DEF ^ /G * - H

) ABC*DEF ^ /G * - H * +

2. Q = ((A + B) * C – (D – E)) ^ (F + G)

Ans:

Q = ((A + B) * C – (D – E)) ^ (F + G))

Symbol Scanned Stack p

0 (

(((

((((

A (((A

+ (((+ A

B (((+ AB

) ((AB+

* ((* AB+

67

C ((* AB+C

- ((- AB+C*

(((- (AB+C*

D ((- (AB+C*D

- ((- (- AB+C*D

E ((- (- AB+C*DE

) ((- AB+C*DE-

) (AB+C*DE--

^ (^ AB+C*DE--

((^ (AB+C*DE--

F (^ (AB+C*DE--F

+ (^ (+ AB+C*DE--F

G (^ (+ AB+C*DE--FG

) (^ AB+C*DE--FG+

) AB+C*DE—FG+^

3. Q = (A + B) * C / D + E ^ F / G

Ans :

Q = (A + B) * C / D + E ^ F / G)

Symbol Scanned Stack p

 (

68

(((

A ((A

+ ((+ A

B ((+ AB

) (AB+

* (* AB+

C (* AB+C

/ (/ AB+C*

D (/ AB+C*D

+ (+ AB+C*D/

E (+ AB+C*D/E

^ (+ ^ AB+C*D/E

F (+ ^ AB+C*D/EF

/ (+ / AB+C*D/EF^

G (+ / AB+C*D/EF^G

) AB+C*D/EF^G/+

69

10. LINEAR SEARCH AND BINARY SEARCH

1. Linear search: Small & unsorted arrays

2. Binary search : Large arrays & sorted arrays

1. Linear Search

 It means looking at each element of the array, in turn, until you find the target value.

Algorithm

 In the best case, the target value is in the first element of the array. So the search takes

some tiny, and constant, amount of time. Computer scientists denote this O(1) In real

life, we don’t care about the best case, because it so rarely actually happens.

 In the worst case, the target value is in the last element of the array. So the search takes

an amount of time proportional to the length of the array. Computer scientists denote

this O(n)

 In the average case, the target value is somewhere in the array. So on average, the

target value will be in the middle of the array. So the search takes an amount of time

proportional to half the length of the array – also proportional to the length of the array

– O(n) again

2. Binary Search

1. Start

2. Read the ITEM to be searched

3. Set flag=0

4. Repeat for i=0 to N

5. if A[i]= =ITEM

6. print “item found”

7. flag=1

8. If flag= =0

9. print “item not found”

70

 The general term for a smart search through sorted data is a binary search.

1. The initial search region is the whole array.

2. Look at the data value in the middle of the search region.

3. If you’ve found your target, stop.

4. If your target is less than the middle data value, the new search region is the lower

half of the data.

5. If your target is greater than the middle data value, the new search region is the

higher half of the data.

6. Continue from Step 2.

71

MODULE 3

SELF REFRENTIAL STRUCTURES

Self-Referential structures are those structures that have one or more

pointers which point to the same type of structure, as their member.

In other words, structures pointing to the same type of structures are self-

referential in nature.

Example:

struct node {

 int data1;

 char data2;

 struct node* link;

};

int main()

{

 struct node ob;

 return 0;

}

In the above example ‘link’ is a pointer to a structure of type ‘node’.

Hence, the structure ‘node’ is a self-referential structure with ‘link’ as the

referencing pointer.

An important point to consider is that the pointer should be initialized

properly before accessing,

as by default it contains garbage value.

https://www.geeksforgeeks.org/structures-c/

72

Types of Self Referential Structures
1. Self Referential Structure with Single Link

2. Self Referential Structure with Multiple Links

Self Referential Structure with Single Link: These structures can have

only one self-pointer as their member. The following example will show

us how to connect the objects of a self-referential structure with the single

link and access the corresponding data members. The connection formed

is shown in the following figure.

Self Referential Structure with Multiple Links: Self referential

structures with multiple links can have more than one self-pointers. Many

complicated data structures can be easily constructed using these

structures. Such structures can easily connect to more than one nodes at a

time. The following example shows one such structure with more than

one links.

The connections made in the above example can be understood using the

following figure.

struct node {

 int data;

 struct node* prev_link;

 struct node* next_link;

};

73

DYNAMIC MEMEORY ALLOCATION

Since C is a structured language, it has some fixed rules for

programming. One of it includes changing the size of an array. An array

is collection of items stored at continuous memory locations.

As it can be seen that the length (size) of the array above made is 9. But

what if there is a requirement to change this length (size). For Example,

 If there is a situation where only 5 elements are needed to be entered

in this array. In this case, the remaining 4 indices are just wasting

memory in this array. So there is a requirement to lessen the length

(size) of the array from 9 to 5.

 Take another situation. In this, there is an array of 9 elements with

all 9 indices filled. But there is a need to enter 3 more elements in

this array. In this case 3 indices more are required. So the length

(size) of the array needs to be changed from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.

C Dynamic Memory Allocation can be defined as a procedure in which

the size of a data structure (like Array) is changed during the runtime.

C provides some functions to achieve these tasks. There are 4 library

functions provided by C defined under <stdlib.h> header file to facilitate

dynamic memory allocation in C programming. They are:

1. malloc()

2. calloc()

3. free()

4. realloc()

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2015/05/Arrays.png

74

malloc() method

“malloc” or “memory allocation” method in C is used to dynamically

allocate a single large block of memory with the specified size. It returns

a pointer of type void which can be cast into a pointer of any form. It

initializes each block with default garbage value.

Syntax:
ptr = (cast-type*) malloc(byte-size)

For Example:

ptr = (int*) malloc(100 * sizeof(int));
Since the size of int is 4 bytes, this statement will allocate 400 bytes of

memory. And, the pointer ptr holds the address of the first byte in the

allocated memory.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // This pointer will hold the

 // base address of the block created

 int* ptr;

 int n, i;

 // Get the number of elements for the array

 n = 5;

 printf("Enter number of elements: %d\n", n);

75

 // Dynamically allocate memory using malloc()

 ptr = (int*)malloc(n * sizeof(int));

 // Check if the memory has been successfully

 // allocated by malloc or not

 if (ptr == NULL) {

 printf("Memory not allocated.\n");

 exit(0);

 }

 else {

 // Memory has been successfully allocated

 printf("Memory successfully allocated using malloc.\n");

 // Get the elements of the array

 for (i = 0; i < n; ++i) {

 ptr[i] = i + 1;

 }

 // Print the elements of the array

 printf("The elements of the array are: ");

 for (i = 0; i < n; ++i) {

 printf("%d, ", ptr[i]);

 }

 }

 return 0;

}

calloc() method

“calloc” or “contiguous allocation” method in C is used to dynamically

allocate the specified number of blocks of memory of the specified type.

It initializes each block with a default value ‘0’.

Syntax:

76

ptr = (cast-type*)calloc(n, element-size);

For Example:

ptr = (float*) calloc(25, sizeof(float));
This statement allocates contiguous space in memory for 25 elements

each with the size of the float.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // This pointer will hold the

 // base address of the block created

 int* ptr;

 int n, i;

 // Get the number of elements for the array

 n = 5;

 printf("Enter number of elements: %d\n", n);

 // Dynamically allocate memory using calloc()

 ptr = (int*)calloc(n, sizeof(int));

 // Check if the memory has been successfully

 // allocated by calloc or not

 if (ptr == NULL) {

 printf("Memory not allocated.\n");

77

 exit(0);

 }

 else {

 // Memory has been successfully allocated

 printf("Memory successfully allocated using calloc.\n");

 // Get the elements of the array

 for (i = 0; i < n; ++i) {

 ptr[i] = i + 1;

 }

 // Print the elements of the array

 printf("The elements of the array are: ");

 for (i = 0; i < n; ++i) {

 printf("%d, ", ptr[i]);

 }

 }

 return 0;

}

free() method

“free” method in C is used to dynamically de-allocate the memory. The

memory allocated using functions malloc() and calloc() is not de-

allocated on their own. Hence the free() method is used, whenever the

dynamic memory allocation takes place. It helps to reduce wastage of

memory by freeing it.

Syntax:
free(ptr);

78

Example:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // This pointer will hold the

 // base address of the block created

 int *ptr, *ptr1;

 int n, i;

 // Get the number of elements for the array

 n = 5;

 printf("Enter number of elements: %d\n", n);

 // Dynamically allocate memory using malloc()

79

 ptr = (int*)malloc(n * sizeof(int));

 // Dynamically allocate memory using calloc()

 ptr1 = (int*)calloc(n, sizeof(int));

 // Check if the memory has been successfully

 // allocated by malloc or not

 if (ptr == NULL || ptr1 == NULL) {

 printf("Memory not allocated.\n");

 exit(0);

 }

 else {

 // Memory has been successfully allocated

 printf("Memory successfully allocated using malloc.\n");

 // Free the memory

 free(ptr);

 printf("Malloc Memory successfully freed.\n");

80

 // Memory has been successfully allocated

 printf("\nMemory successfully allocated using calloc.\n");

 // Free the memory

 free(ptr1);

 printf("Calloc Memory successfully freed.\n");

 }

 return 0;

}

realloc() method

“realloc” or “re-allocation” method in C is used to dynamically change

the memory allocation of a previously allocated memory. In other words,

if the memory previously allocated with the help of malloc or calloc is

insufficient, realloc can be used to dynamically re-allocate memory. re-

allocation of memory maintains the already present value and new blocks

will be initialized with default garbage value.

Syntax:
ptr = realloc(ptr, newSize);

where ptr is reallocated with new size 'newSize'.

81

If space is insufficient, allocation fails and returns a NULL pointer.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // This pointer will hold the

 // base address of the block created

 int* ptr;

 int n, i;

 // Get the number of elements for the array

 n = 5;

 printf("Enter number of elements: %d\n", n);

82

 // Dynamically allocate memory using calloc()

 ptr = (int*)calloc(n, sizeof(int));

 // Check if the memory has been successfully

 // allocated by malloc or not

 if (ptr == NULL) {

 printf("Memory not allocated.\n");

 exit(0);

 }

 else {

 // Memory has been successfully allocated

 printf("Memory successfully allocated using calloc.\n");

 // Get the elements of the array

 for (i = 0; i < n; ++i) {

 ptr[i] = i + 1;

 }

83

 // Print the elements of the array

 printf("The elements of the array are: ");

 for (i = 0; i < n; ++i) {

 printf("%d, ", ptr[i]);

 }

 // Get the new size for the array

 n = 10;

 printf("\n\nEnter the new size of the array: %d\n", n);

 // Dynamically re-allocate memory using realloc()

 ptr = realloc(ptr, n * sizeof(int));

 // Memory has been successfully allocated

 printf("Memory successfully re-allocated using realloc.\n");

 // Get the new elements of the array

 for (i = 5; i < n; ++i) {

 ptr[i] = i + 1;

 }

84

 // Print the elements of the array

 printf("The elements of the array are: ");

 for (i = 0; i < n; ++i) {

 printf("%d, ", ptr[i]);

 }

 free(ptr);

 }

 return 0;

}

LINKED LISTS

A linked list, in simple terms, is a linear collection of data elements.

These data elements are called nodes.

Linked list is a data structure which in turn can be used to implement

other data structures.

85

In Fig, we can see a linked list in which every node contains two

parts, an integer and a pointer to the next node.

The left part of the node which contains data may include a

simple data type, an array, or a structure.

The right part of the node contains a pointer to the next node

(or address of the next node in sequence).

The last node will have no next node connected to it, so it will

store a special value called NULL. In Fig, the NULL pointer is

represented by X.

While programming, we usually define NULL as –1. Hence, a

NULL pointer denotes the end of the list.

Linked lists contain a pointer variable START that stores the

address of the first node in the list.

We can traverse the entire list using START which contains the

address of the first node; the next part of the first node in turn

stores the address of its succeeding node.

Using this technique, the individual nodes of the list will form a

chain of nodes.

If START = NULL, then the linked list is empty and contains no

nodes.

In C, we can implement a linked list using the following code:

struct node

{

int data;

86

struct node *next;

};

Let us see how a linked list is maintained in the memory.

• In order to form a linked list, we need a structure called node

which has two fields, DATA and NEXT.

• DATA will store the information part and NEXT will store the

address of the next node in sequence. Consider Fig. 6.2.

• In the figure, we can see that the variable START is used to

store the address of the first node. Here, in this example,

START= 1, so the first data is stored at address 1, which is H.

• The corresponding NEXT stores the address of the next node,

which is 4. So, we will look at address 4 to fetch the next data

item.

• The second data element obtained from address 4 is E.

• Again, we see the corresponding NEXT to go to the next node.

From the entry in the NEXT, we get the next address, that is 7,

and fetch L as the data.

• We repeat this procedure until we reach a position where the

NEXT entry contains –1 or NULL, as this would denote the end

of the linked list.

87

Advantages

Linked list have many advantages. Some of the very important

advantages are:

• Linked Lists are dynamic data structure: That is, they can

grow or shrink during the execution of a program.

• Efficient memory utilization: Here, memory is not pre-

allocated. Memory is allocated whenever it is required. And

it is deallocated when it is no longer needed.

• Insertion and deletions are easier and efficient: Linked

lists provide flexibility in inserting data item at a specified

position and deletion of a data item from the given position.

• Many complex applications can be easily carried out with

linked lists.

88

Disadvantages

• More Memory: If the numbers of fields are more, then

more memory space is needed.

• Access to an arbitrary data item is little bit cumbersome and

also time consuming.

Types of Linked List

Following are the various flavours of linked list.

• Simple Linked List − Item Navigation is forward only.

• Doubly Linked List − Items can be navigated forward and

backward way.

• Circular Linked List − Last item contains link of the first

element as next and and first element has link to last

element as prev.

 Basic Operations

• Insertion − add an element at the beginning of the list.

• Display − displaying complete list.

• Search − search an element using given key.

• Delete − delete an element using given key

SINGLY LINKED Lists

• A singly linked list is the simplest type of linked list in which

every node contains some data and a pointer to the next node of

the same data type.

• A singly linked list allows traversal of data only in one way.

Figure 6.7 shows a singly linked list

89

LINKED LIST OPERATIONS

Traversing a Linked List

• Traversing a linked list means accessing the nodes of the list in

order to perform some processing on them.

• a linked list always contains a pointer variable START which

stores the address of the first node of the list. End of the list is

marked by storing NULL or –1 in the NEXT field of the last

node.

• For traversing the linked list, we also make use of another

pointer variable PTR which points to the node that is currently

being accessed.

• The algorithm to traverse a linked list is shown in Fig. 6.8.

• In this algorithm, we first initialize PTR with the address of

START. So now, PTR points to the first node of the linked list.

90

 Then in Step 2, a while loop is executed which is repeated till

PTR processes the last node, that is until it encounters NULL.

 In Step 3, we apply the process (e.g., print) to the current node,

that is, the node pointed by PTR.

• In Step 4, we move to the next node by making the

 PTR variable point to the node whose address is stored

 in the NEXT field.

Searching for a Value in a Linked List

Consider the linked list shown in Fig. 6.11. If we have VAL = 4,

then the flow of the algorithm can be explained as shown in the

figure.

91

Steps to create a linked list

Step 1 : Include alloc.h Header File

 #include<alloc.h>

1. We don‟t know, how many nodes user is going to create

once he execute the program.

2. In this case we are going to allocate memory using

Dynamic Memory Allocation functions malloc.

3. Dynamic memory allocation functions are included in

alloc.h

Step 2 : Define Node Structure

We are now defining the new global node which can be

accessible through any of the function.

struct node

{ int data;

 struct node *next;

 }*start=NULL;

Step 3 : Create Node using Dynamic Memory Allocation .Now we

are creating one node dynamically using malloc function.We don‟t

have prior knowledge about number of nodes , so we are calling

malloc function to create node at run time.

 new_node=(struct node *)malloc(sizeof(struct node));

Fill Information in newly Created Node ,Now we are accepting

value from the user using scanf. Accepted Integer value is stored in

the data field. Whenever we create new node , Make its Next Field

http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html
http://www.c4learn.com/dynamic-memory-allocation-malloc-calloc.html

92

as NULL. printf("Enter the data : "); scanf("%d",&new_node-

>data);

 Step 4 : if(start==NULL) then new_node -> next = NULL;

start = new_node;

otherwise ptr=start;

while(ptr->next!=NULL)

ptr=ptr->next;

ptr->next = new_node;

 new_node->next=NULL;

step 5:continue this process till while(num!=-1)

Inserting a New Node in a Linked List

• Case 1: The new node is inserted at the beginning.

• Case 2: The new node is inserted at the end.

• Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Linked List

• Consider the linked list shown in Fig. 6.12. Suppose we want to

add a new node with data 9 and

• add it as the first node of the list. Then the following changes

will be done in the linked list.

93

• In Step 1, we first check whether memory is available for the

new node. If the free memory has exhausted, then an

OVERFLOW message is printed.

• Otherwise, if a free memory cell is available, then we allocate

space for the new node.

• Set its DATA part with the given VAL and the next part is

initialized with the address of the first node of the list, which is

stored in START.

94

• Now, since the new node is added as the first node of the list, it

will now be known as the START node, that is, the START

pointer variable will now hold the address of the NEW_NODE.

Note the following two steps:

• Step 2: SET NEW_NODE = AVAIL

• Step 3: SET AVAIL = AVAIL -> NEXT

• These steps allocate memory for the new node.

Program

node *insert_beg(node *start)

{

node *new_node;

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (node *)malloc(sizeof(node));

new_node -> data = num;

new_node -> next = start;

start = new_node;

return start;

}

CASE 2: Inserting a Node at the End of a Linked List

95

• Suppose we want to add a new node with data 9 as the last node of

the list. Then the following changes will be done in the linked list.

 In Step 6, we take a pointer variable PTR and initialize it with

START. That is, PTR now points to the first node of the linked

list.

96

 In the while loop, we traverse through the linked list to reach

the last node.

 Once we reach the last node, in Step 9, we change the NEXT pointer

of the last node to store the address of the new node.

program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node;

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (node *)malloc(sizeof(node));

new_node -> data = num;

new_node -> next = NULL;

ptr = start;

while(ptr -> next != NULL)

ptr = ptr -> next;

ptr -> next = new_node;

return start;

}

 CASE 3: Inserting a Node After a Given Node in a Linked List

• Consider the linked list shown in Fig. 6.17. Suppose we want to add

a new node with value 9 after the node containing data 3

97

• In Step 5, we take a pointer variable PTR and initialize it with

START. That is, PTR now points to the first node of the linked list.

• Then we take another pointer variable PREPTR which will be used

to store the address of the node preceding PTR.

• Initially, PREPTR is initialized to PTR.

• So now, PTR,PREPTR, and START are all pointing to the first node

of the linked list.

• In the while loop, we traverse through the linked list to reach the

node that has its value equal to NUM.

• We need to reach this node because the new node will be inserted

after this node.

98

• Once we reach this node, in Steps 10 and 11, we change the NEXT

pointers in such a way that new node is inserted after the desired

node.

Program

node *insert_after(node *start)

{

99

node *new_node, *ptr, *preptr;

int num, val;

printf("\n Enter the data : ");

scanf("%d", &num);

printf("\n Enter the value after which the data has to be inserted : ");

scanf("%d", &val);

new_node = (node *)malloc(sizeof(node));

new_node -> data = num;

ptr = start;

preptr = ptr;

while(preptr -> data != val)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next=new_node;

new_node -> next = ptr;

return start;

}

Deleting a Node from a Linked List

100

• We will consider three cases and then see how deletion is done in

each case.

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

• Case 3: The node after a given node is deleted.

CASE 1:Deleting the First Node from a Linked List

• Before we describe the algorithms in all these three cases, let us

first discuss an important term called UNDERFLOW.

• Underflow is a condition that occurs when we try to delete a node

from a linked list that is empty.

• This happens when START = NULL or when there are no more

nodes to delete.

• Note that when we delete a node from a linked list, we actually have

to free the memory occupied by that node.

• The memory is returned to the free pool so that it can be used to

store other programs and data. Whatever be the case of deletion, we

always change the AVAIL pointer so that it points to the address

that has been recently vacated.

101

• If START = NULL, then it signifies that there are no nodes in the

list and the control is transferred to the last statement of the

algorithm.

• if there are nodes in the linked list, then we use a pointer variable

PTR that is set to point to the first node of the list.

• For this, we initialize PTR with START that stores the address of

the first node of the list.

• In Step 3, START is made to point to the next node in sequence

and finally the memory occupied by the node pointed by PTR

(initially the first node of the list) is freed and returned to the free

pool.

Program

struct node *delete_beg(node *start)

{

struct node *ptr;

ptr = start;

start = start -> next;

102

free(ptr);

return start;

}

CASE2: Deleting the Last Node from a Linked List

• Consider the linked list shown in Fig. 6.22. Suppose we want to

delete the last node from the linked list, then the following changes

will be done in the linked list.

• Figure 6.23 shows the algorithm to delete the last node from a linked

list. In Step 2, we take a pointer variable PTR and initialize it with

START.

103

• That is, PTR now points to the first node of the linked list. In the

while loop, we take another pointer variable PREPTR such that it

always points to one node before the PTR.

• Once we reach the last node and the second last node, we set the

NEXT pointer of the second last node to NULL, so that it now

becomes the (new) last node of the linked list.

• The memory of the previous last node is freed and returned back to

the free pool

Program

node *delete_end(node *start)

{

node *ptr, *preptr;

ptr = start;

while(ptr -> next != NULL)

104

{

preptr = ptr;

ptr = ptr -> next;

}preptr -> next = NULL;

free(ptr);

return start;}

CASE 3:Deleting the Node After a Given Node in a Linked List

• In Step 2, we take a pointer variable PTR and initialize it with

START. That is, PTR now points to the first node of the linked list.

• In the while loop, we take another pointer variable PREPTR such

that it always points to one node before the PTR.

• Once we reach the node containing VAL and the node

• succeeding it, we set the next pointer of the node containing VAL to

the address contained in next field of the node succeeding it.

• The memory of the node succeeding the given node is freed and

returned back to the free pool.

105

• Consider the linked list shown in Fig. 6.24.

• Suppose we want to delete the node that succeeds the node which

contains data value 4. Then the following changes will be done in

the linked list

•

Program

node *delete_after(node *start)

{

node *ptr, *preptr;

int val;

printf("\n Enter the value after which the node has to deleted : ");

106

scanf("%d", &val);

ptr = start;

preptr = ptr;

while(preptr -> data != val)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next=ptr -> next;

free(ptr);

return start;

}

CIRCULAR LINKED LISTs

• In a circular linked list, the last node contains a pointer to the first

node of the list.

• We can have a circular singly linked list as well as a circular

doubly linked list.

• While traversing a circular linked list, we can begin at any node

and traverse the list in any direction, forward or backward, until we

reach the same node where we started.

• Thus, a circular linked list has no beginning and no ending. Figure

6.26 shows a circular linked list.

107

Inserting a New Node in a Circular Linked List

• Case 1: The new node is inserted at the beginning of the circular

linked list.

• Case 2: The new node is inserted at the end of the circular linked

list.

CASE 1:Inserting a Node at the Beginning of a Circular Linked

List

• Consider the linked list shown in Fig. 6.29. Suppose we want to add

a new node with data 9 as the first node of the list.

 Figure 6.30 shows the algorithm to insert a new node at the

beginning of a linked list. In Step 1, we first check whether memory

108

is available for the new node. If the free memory has exhausted, then

an OVERFLOW message is printed.

 Otherwise, if free memory cell is available, then we allocate space

for the new node.

 Set its DATA part with the given VAL and the NEXT part is

initialized with the address of the first node of the list, which is

stored in START.

 Now, since the new node is added as the first node of the list, it will

now be known as the START node,that is, the START pointer

variable will now hold the address of the NEW_NODE.

 While inserting a node in a circular linked list, we have to use a

while loop to traverse to the last node of the list.

 Because the last node contains a pointer to START, its NEXT field

is updated so that after insertion it points to the new node which will

be now known as START

109

Program insert new node at beginning

struct node *insert_beg(struct node *start)

{

struct node *new_node, *ptr;

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> data = num;

ptr = start;

while(ptr -> next != start)

ptr = ptr -> next;

ptr -> next = new_node;

new_node -> next = start;

start = new_node;

return start;

}

CASE 2: Inserting a Node at the End of a Circular Linked List

110

• Figure 6.32 shows the algorithm to insert a new node at the end of a

circular linked list.

• In Step 6, we take a pointer variable PTR and initialize it with

START.

• That is, PTR now points to the first node of the linked list.

• In the while loop, we traverse through the linked list to reach the last

node.

• Once we reach the last node, in Step 9, we change the NEXT pointer

of the last node to store the address of the new node.

• Remember that the NEXT field of the new node contains the address

of the first node which is denoted by START.

Program

struct node *insert_end(struct node *start)

111

{

struct node *ptr, *new_node;

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> data = num;

ptr = start;

while(ptr -> next != start)

ptr = ptr -> next;

ptr -> next = new_node;

new_node -> next = start;

return start;}

Deleting a Node from a Circular Linked List

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

CASE 1: Deleting the First Node from a Circular Linked List

112

• In Step 1 of the algorithm, we check if the linked list exists or not.

If START = NULL, then it signifies that there are no nodes in the

list and the control is transferred to the last statement of the

algorithm.

• However, if there are nodes in the linked list, then we use a pointer

variable PTR which will be used to traverse the list to ultimately

reach the last node.

• In Step 5, we change the next pointer of the last node to point to the

second node of the circular linked list.

• In Step 6, the memory occupied by the first node is freed.

• Finally, in Step 7, the second node now becomes the first node of

the list and its address is stored in the pointer variable START.

Program

struct node *delete_beg(struct node *start)

{

113

struct node *ptr;

ptr = start;

while(ptr -> next != start)

ptr = ptr -> next;

ptr -> next = start -> next;

free(start);

start = ptr -> next;

return start;

}

CASE 2: Deleting the Last Node from a Circular Linked List

• In Step 2, we take a pointer variable PTR and initialize it with

START.

• That is,PTR now points to the first node of the linked list.

114

• In the while loop, we take another pointer variable PREPTR such

that PREPTR always points to one node before PTR.

• Once we reach the last node and the second last node, we set the

next pointer of the second last node to START, so that it now

becomes the (new) last node of the linked list.

• The memory of the previous last node is freed and returned to the

free pool.

program

program

struct node *delete_end(struct node *start)

{

115

struct node *ptr, *preptr;

ptr = start;

while(ptr -> next != start)

{

preptr = ptr;

ptr = ptr -> next;

}

preptr -> next = ptr -> next;

free(ptr);

return start;}

DOUBLY LINKED LISTS

• A doubly linked list or a two-way linked list is a more complex

type of linked list which contains a pointer to the next as well as

the previous node in the sequence.

• Therefore, it consists of three parts—data, a pointer to the next

node, and a pointer to the previous node .

116

• The PREV field of the first node and the NEXT field of the last node

will contain NULL.

• The PREV field is used to store the address of the preceding node,

which enables us to traverse the list in the backward direction.

• Thus, we see that a doubly linked list calls for more space per node

and more expensive basic operations.

• However, a doubly linked list provides the ease to manipulate the

elements of the list as it maintains pointers to nodes in both the

directions (forward and backward).

• The main advantage of using a doubly linked list is that it makes

searching twice as efficient.

Inserting a New Node in a Doubly Linked List

• Case 1: The new node is inserted at the beginning.

• Case 2: The new node is inserted at the end.

• Case 3: The new node is inserted after a given node.

CASE 1: Inserting a Node at the Beginning of a Doubly Linked

List

=

117

• In Step 1, we first check whether memory is available for the new

node.

• If the free memory has exhausted, then an OVERFLOW message

is printed.

• Otherwise, if free memory cell is available, then we allocate space

for the new node.

• Set its DATA part with the given VAL and the NEXT part is

initialized with the address of the first node of the list, which is

stored in START.

• Now, since the new node is added as the first node of the list, it will

now be known as the START node, that is, the START pointer

variable will now hold the address of NEW_NODE.

program

struct node *insert_beg(struct node *start)

{

struct node *new_node;

118

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> data = num;

start -> prev = new_node;

new_node -> next = start;

new_node -> prev = NULL;

start = new_node;

return start;

}

CASE 2: Inserting a Node at the End end of a Doubly Linked List

• Figure 6.42 shows the algorithm to insert a new node at the end of a

doubly linked list. In Step 6, we take a pointer variable PTR and

initialize it with START.

119

• In the while loop, we traverse through the linked list to reach the

last node.

• Once we reach the last node, in Step 9, we change the NEXT pointer

of the last node to store the address of the new node. Remember that

the NEXT field of the

• new node contains NULL which signifies the end of the linked list.

• The PREV field of the NEW_NODE will be set so that it points to

the node pointed by PTR (now the second last node of the list).

Program

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node;

int num;

120

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> data = num;

ptr=start;

while(ptr -> next != NULL)

ptr = ptr -> next;

ptr -> next = new_node;

new_node -> prev = ptr;

new_node -> next = NULL;

return start;

}

CASE 3: Inserting a Node After a Given Node in a Doubly Linked List

Figure 6.43 shows the algorithm to insert a new node after a given node

in a doubly linked list.

121

 In Step 5, we take a pointer PTR and initialize it with START. That is,

PTR now points to the first node of the linked list. In the while loop, we

traverse through the linked list to reach the node that has its value equal

to NUM.

 We need to reach this node because the new node will be inserted after

this node. Once we reach this node, we change the NEXT and PREV

fields in such a way that the new node is inserted after the desired node.

Program

struct node *insert_after(struct node *start)

{

122

struct node *new_node, *ptr;

int num, val;

printf("\n Enter the data : ");

scanf("%d", &num);

printf("\n Enter the value after which the data has to be inserted : ");

scanf("%d", &val);

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> data = num;

ptr = start;

while(ptr -> data != val)

ptr = ptr -> next;

new_node -> prev = ptr;

new_node -> next = ptr -> next;

ptr -> next -> prev = new_node;

ptr -> next = new_node;

return start;

}

Deleting a Node from a Doubly Linked List

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

• Case 3: The node after a given node is deleted.

CASE 1: Deleting the First Node from a Doubly Linked List

• When we want to delete a node from the beginning of the list, then

the following changes will be done in the linked list.

123

• Figure 6.48 shows the algorithm to delete the first node of a doubly

linked list.

• In Step 1 of the algorithm, we check if the linked list exists or not.

If START =NULL, then it signifies that there are no nodes in the list

and the control is transferred to the last statement of the algorithm.

• However, if there are nodes in the linked list, then we use a

temporary pointer variable PTR that is set to point to the first node

of the list.

• For this, we initialize PTR with START that stores the address of

the first node of the list.

• In Step 3, START is made to point to the next node in sequence and

finally the memory occupied by PTR (initially the first node of the

list) is freed and returned to the free pool.

Program

struct node *delete_beg(struct node *start)

{

struct node *ptr;

ptr = start;

start = start -> next;

124

start -> prev = NULL;

free(ptr);

return start;

}

CASE 2: Deleting the Last Node from a Doubly Linked List

• Suppose we want to delete the last node from the linked list, then

the following changes will be done in the linked list.

• Figure 6.50 shows the algorithm to delete the last node of a doubly

linked list.

125

• In Step 2, we take a pointer variable PTR and initialize it with

START.

• That is, PTR now points to the first node of the linked list. The while

loop traverses through the list to reach the last node.

• Once we reach the last node, we can also access the second last node

by taking its address from the PREV field of the last node.

• To delete the last node, we simply have to set the next field of second

last node to NULL, so that it now becomes the (new) last node of

the linked list.

• The memory of the previous last node is freed and returned to the

free pool.

Program

struct node *delete_end(struct node *start)

{

struct node *ptr;

ptr = start;

while(ptr -> next != NULL)

ptr = ptr -> next;

ptr -> prev -> next = NULL;

free(ptr);

return start;

}

CASE 3 : Deleting the Node After a Given Node in a Doubly Linked List

126

In Step 2, we take a pointer variable PTR and initialize it with

127

START. That is, PTR now points to the first node of the doubly linked

list. The while loop traverses through the linked list to reach the given

node.

• Once we reach the node containing VAL, the node

• succeeding it can be easily accessed by using the address stored in

its NEXT field. The NEXT field of the given node is set to contain

the contents in the NEXT field of the succeeding node.

• Finally, the memory of the node succeeding the given node is freed

and returned to the free pool.

Program

struct node *delete_after(struct node *start)

{

struct node *ptr, *temp;

int val;

printf("\n Enter the value after which the node has to deleted : ");

scanf("%d", &val);

ptr = start;

while(ptr -> data != val)

ptr = ptr -> next;

temp = ptr -> next;

ptr -> next = temp -> next;

temp -> next -> prev = ptr;

free(temp);

return start;

}

Header Linked Lists

128

• A header linked list is a special type of linked list which contains a

header node at the beginning of the list. So, in a header linked list,

START will not point to the first node of the list but START will

contain the address of the header node.

• The following are the two variants of a header linked list:

• Grounded header linked list which stores NULL in the next field of

the last node.

• Circular header linked list which stores the address of the header

node in the next field of the last node. Here, the header node will

denote the end of the list.

Application of linked list-Polynomial

Polynomial Addition

Linked list are widely used to represent and manipulate

polynomials. Polynomials are the expressions containing number

of terms with nonzero coefficient and exponents.In the linked

representation of polynomials, each term is considered as a node.

And such a node contains three fields

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

129

• Coefficient field

. Exponent field

• Link field

The coefficient field holds the value of the coefficient of a

term and the exponent field contains the exponent value of the

term. And the link field contains the address of the next term in

the polynomial. The polynomial node structure is

Coefficient(coeff) Exponent(expo)

Address

of the next

node(next)

Algorithm

Two polynomials can be added. And the steps involved in

adding two polynomials are given below

1. Read the number of terms in the first polynomial P

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial Q

4. Read the coefficient and exponent of the second

polynomial

5. Set the temporary pointers p and q to travers the two

polynomials respectively

6. Compare the exponents of two polynomials starting from

the first nodes

a) If both exponents are equal then add the coefficient

and store it in the resultant linked list

130

b) If the exponent of the current term in the first

polynomial P is less than the exponent of the current

term of the second polynomial then added the second

term to the resultant linked list. And, move the pointer

q to point to the next node in the second polynomial

Q.

c) If the exponent of the current term in the first

polynomial P is greater than the exponent of the

current term in the second polynomial Q, then the

current term of the first polynomial is added to the

resultant linked list. And move the pointer p to the

next node.

d) Append the remaining nodes of either of the

polynomials to the resultant linked list.

Let us illustrate the way the two polynomials are added. Let p and q

be two polynomials having three terms each.

P=3x2+2x+7

Q=5x3+2x2+x

These two polynomial can be represented as

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/

131

Step 1. Compare the exponent of p and the corresponding

exponent of q. Here,

expo(p)<expo(q)

So, add the terms pointed to by q to the resultant list. And now

advance the q pointer.

Step 2.

http://www.ktustudents.in/

132

Compare the exponent of the current terms. Here,

expo(p)=expo(q)

So, add the coefficients of these two terms and link this to the

resultant list. And, advance the pointers p and q to their next

nodes.

Compare the exponents of the current

terms again expo(p)=expo(q)

So, add the coefficients of these two terms and link this to

the resultant linked list. And, advance the pointers to their next

nodes. Q reaches the NULL and p points the last node.

133

There is no node in the second polynomial to compare with.

So, the last node in the first polynomial is added to the end of the

resultant linked list.

Step 5. Display the resultant linked list. The resultant linked

list is pointed to by the pointer R

Algorithm for Polynomial Multiplication

1. Read the number of terms in the first polynomial

2. Read the coefficient and exponent of the first polynomial

3. Read the number of terms in the second polynomial

4. Read the coefficient and exponent of the second

polynomial

5. if one of the list is empty then the nonempty linked list is

added to the resultant linked list Otherwise goto step 6.

6. for each term of the first list

134

a) multiply each term of the second linked list

with a term of the first linked list

b) add the new term to the resultant polynomial

c) reposition the pointer to the starting of the

second linked list

d) go to the next node

e) adds a term to the polynomial in the

descending order of the exponent

 7. Display the resultant linked list

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack.

Linked list allocates the memory dynamically. However, time

complexity in both the scenario is same for all the operations i.e. push,

pop and peek.

In linked list implementation of stack, the nodes are maintained non-

contiguously in the memory. Each node contains a pointer to its

immediate successor node in the stack. Stack is said to be overflown if

the space left in the memory heap is not enough to create a node.

135

The top most node in the stack always contains null in its address field.

Lets discuss the way in which, each operation is performed in linked list

implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an

element to a stack in linked list implementation is different from that of

an array implementation. In order to push an element onto the stack, the

following steps are involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of

the list. This includes assigning value to the data part of the node

and assign null to the address part of the node.

3. If there are some nodes in the list already, then we have to add the

new element in the beginning of the list (to not violate the property

of the stack). For this purpose, assign the address of the starting

element to the address field of the new node and make the new

node, the starting node of the list.

Time Complexity : o(1)

136

C implementation :

void push ()

{

 int val;

 struct node *ptr =(struct node*)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("not able to push the element");

 }

 else

 {

 printf("Enter the value");

 scanf("%d",&val);

 if(head==NULL)

 {

 ptr->val = val;

 ptr -> next = NULL;

 head=ptr;

 }

 else

 {

 ptr->val = val;

 ptr->next = head;

 head=ptr;

 }

 printf("Item pushed");

 }

}

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to

as pop operation. Deleting a node from the linked list

137

implementation of stack is different from that in the array

implementation. In order to pop an element from the stack, we

need to follow the following steps :

1. Check for the underflow condition: The underflow

condition occurs when we try to pop from an already empty

stack. The stack will be empty if the head pointer of the list

points to null.

2. Adjust the head pointer accordingly: In stack, the elements

are popped only from one end, therefore, the value stored in

the head pointer must be deleted and the node must be freed.

The next node of the head node now becomes the head node.

Time Complexity : o(n)

C implementation

void pop()

{

 int item;

 struct node *ptr;

 if (head == NULL)

 {

 printf("Underflow");

 }

 else

 {

 item = head->val;

 ptr = head;

 head = head->next;

 free(ptr);

 printf("Item popped");

 }

}

138

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of

the linked list organized in the form of stack. For this purpose, we

need to follow the following steps.

3. Copy the head pointer into a temporary pointer.

4. Move the temporary pointer through all the nodes of the list

and print the value field attached to every node.

Time Complexity : o(n)

C Implementation

void display()

{

 int i;

 struct node *ptr;

 ptr=head;

 if(ptr == NULL)

 {

 printf("Stack is empty\n");

 }

 else

 {

 printf("Printing Stack elements \n");

 while(ptr!=NULL)

 {

 printf("%d\n",ptr->val);

 ptr = ptr->next;

 }

 }

}

139

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial,

the array implementation cannot be used for the large scale applications

where the queues are implemented. One of the alternative of array

implementation is linked list implementation of queue.

The storage requirement of linked representation of a queue with n

elements is o(n) while the time requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data

part and the link part. Each element of the queue points to its immediate

next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e.

front pointer and rear pointer. The front pointer contains the address of

the starting element of the queue while the rear pointer contains the

address of the last element of the queue.

Insertion and deletions are performed at rear and front end respectively.

If front and rear both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked

queues. The operations are Insertion and Deletion.

140

Insert operation

The insert operation append the queue by adding an element to the end

of the queue. The new element will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following

statement.

Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the

linked queue.

In the first scenario, we insert element into an empty queue. In this case,

the condition front = NULL becomes true. Now, the new element will

be added as the only element of the queue and the next pointer of front

and rear pointer both, will point to NULL.

ptr -> data = item;

 if(front == NULL)

 {

 front = ptr;

 rear = ptr;

 front -> next = NULL;

 rear -> next = NULL;

 }

In the second case, the queue contains more than one element. The

condition front = NULL becomes false. In this scenario, we need to

update the end pointer rear so that the next pointer of rear will point to

the new node ptr. Since, this is a linked queue, hence we also need to

make the rear pointer point to the newly added node ptr. We also need

to make the next pointer of rear point to NULL.

rear -> next = ptr;

 rear = ptr;

 rear->next = NULL;

141

In this way, the element is inserted into the queue. The algorithm and the

C implementation is given as follows.

Algorithm

o Step 1: Allocate the space for the new node PTR

o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

o Step 4: END

C Function

void insert(struct node *ptr, int item;)

{

 ptr = (struct node *) malloc (sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 return;

 }

 else

 {

 ptr -> data = item;

 if(front == NULL)

 {

 front = ptr;

 rear = ptr;

 front -> next = NULL;

142

 rear -> next = NULL;

 }

 else

 {

 rear -> next = ptr;

 rear = ptr;

 rear->next = NULL;

 }

 }

}

Deletion

Deletion operation removes the element that is first inserted among all

the queue elements. Firstly, we need to check either the list is empty or

not. The condition front == NULL becomes true if the list is empty, in

this case , we simply write underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer

front. For this purpose, copy the node pointed by the front pointer into

the pointer ptr. Now, shift the front pointer, point to its next node and

free the node pointed by the node ptr. This is done by using the

following statements.

ptr = front;

 front = front -> next;

 free(ptr);

The algorithm and C function is given as follows.

Algorithm

o Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

o Step 2: SET PTR = FRONT

143

o Step 3: SET FRONT = FRONT -> NEXT

o Step 4: FREE PTR

o Step 5: END

C Function

void delete (struct node *ptr)

{

 if(front == NULL)

 {

 printf("\nUNDERFLOW\n");

 return;

 }

 else

 {

 ptr = front;

 front = front -> next;

 free(ptr);

 }

}

Memory management
Basic task of any program is to manipulate data.These data should

be stored in memory during their manipulation. There are two

memory management schemes for the storage allocations of data:

1. Static storage management

2. Dynamic storage management

1.1 Static storage management In case of static storage management scheme,

the net amount of memory required for various data for a program is allocated

before the starting of the execution of the program.Once memory is allocated, it

neither can be extended nor can be returned to the memory bank for the use of

other programs at the same time.

144

1.2 Dynamic storage management

 Dynamic storage management scheme allows the user to allocate and

deallocate as per the necessity during the execution of programs.

 This dynamic memory management scheme is suitable in

multiprogramming as well as single-user environment where generally

more than one program reside in the memory and their memory

requirement can be known only during their execution.

 Operating systems (OS) generally provides the service of dynamic memory

management. The data structure for implementing such a scheme is linked

list.

 Various principles on which the dynamic memory management scheme is

based on

1. Allocation schemes: here we discuss how a request for a memory block will be

serviced.

(a) Fixed block allocation

(b) Variable block allocation.

(i) First fit and its variant, (ii) Next fit , (iii) Best fit, (iv) Worst fit

2. Deallocation schemes: here we discuss how to return a memory block to the

memory bank whenever it is no more required.

(a) Random deallocation

(b) Ordered deallocation.

3. Garbage collection: to maintain a memory bank so that it can be utilized

efficiently.

2. Allocation schemes

 Memory bank or pool of free storages is often a collection of non-

contiguous blocks of memory.

145

 Their linearity can be maintained by means of pointers between one block

to another or in other words, memory bank is a linked list where links are

to maintain the adjacency of blocks.

 Regarding the size of the blocks there are two practices: fixed block storage

and variable block storage. Let us discuss each of them individually.

 2.1 Fixed Block Storage:

Here each block is of the same size.

 The size is determined by the system manager (user).

 Here, the memory manager (a program of OS) maintains a pointer

AVAIL which points a list of non-contiguous memory blocks.

 A user program communicates with the memory manager by means

of two functions GETNODE(NODE) and RETURNNODE(ptr)

 Procedure GETNODE(NODE)

Steps
1. Start

2. If (AVAIL = NULL) then

 Print "The memory is insufficient"
3. Else

 ptr = AVAIL
 AVAIL = AVAIL->LINK

146

 Return(ptr)

4. Endlf
5. Stop

 Whenever a memory block is no more required, it can be returned to

the memory bank through a procedure RETURNNODE()

 Procedure RETURNNODE(PTR)

 Steps

1. Start

2. ptrl = AVAIL

3. While (ptrl->LINK # NULL) do

 ptrl = ptr1->LINK

4. EndWhile

5. ptr1->LINK= PTR

6. ptr->LINK= NULL

7. Stop

 Fixed block allocation is the simplest strategy. But the main drawback

of this strategy is the wastage of space.

 For example, suppose each memory block is of size 1 K (1024 bytes);

now for a request of memory block, say, of size 1.1 K we have to avail

2 blocks (that is 2 K memory space) thus wasting 0.9 K memory

space.

2.2 Variable Block Storage

 Here, the memory manager (a program of OS) maintains a pointer

AVAIL which points a list of non-contiguous memory blocks.

 To overcome the disadvantages of fixed block storage, we can maintain

blocks of variable sizes, instead of fixed size blocks.

 Procedure GETNODE(NODE)

147

Steps
1. Start
2. If (AVAIL = NULL) then

 1. Print "Memory bank is insufficient"
2. Exit

 3. Endlf
4. ptr = AVAIL

5. While (ptr->LINK ≠NULL) and (ptr->SIZE < SIZEOF(NODE))

do
 1. ptrl = ptr

 2. ptr = ptr->LINK
6. EndWhile

7. If (ptr->LINK = NULL) and (ptr->SIZE < SIZEOF(NODE))
then

 1. Print "Memory request is too large: Unable to serve"
8. Else

1. ptrl->LINK = ptr->LINK
o 2. Return(ptr)

9. Endlf
10.Stop

 This procedure assumes that blocks of memory are stored in ascending order

of their sizes.

 Procedure RETURNNODE(PTR)
Steps

1. Start

2. ptrl = AVAIL
3. While (ptrl->SIZE < ptr->SIZE) and (ptrl->LINK # NULL)) do

 1. ptr2 = ptrl
 2. ptrl = ptrl->LINK

4. EndWhile
5. ptr2->LINK = PTR

6. PTR->LINK = ptrl
7. Stop

 The dynamic memory management system should provide the

following services:

(a) Searching the memory for a block of requested size and servicing

the request (allocation)

(b) Handling a free block when it is returned to the memory manager.

148

(c) Coalescing the smaller free blocks into larger block(s) (garbage

collection and compaction).

 2.2.1 Storage allocation strategies

 (a) First-fit allocation, (b) Best-fit allocation, (c) Worst-fit

allocation, (d) Next-fit allocation

 First-fit storage allocation:

 This is the simplest storage allocation strategy.

 Here the list of available storages will be searched and as soon as a

free storage block of size N will be found pointer of that block will be

sent to the calling program after retaining the residue space.

 For example, for a block of size 2 K, if the first-fit strategy found a

block of 7 K, then after retaining a storage block of size 5 K, 2 K

memory will be sent to the caller.

 Leads to fast allocation of memory space.

 Leads to memory waste

149

 Best-fit storage allocation

 This strategy will not allocate a block of size > N, as it is found in first-

fit method, instead will continue searching to find a suitable block so

that the block size is closer to the block size of request.

 Goal: find the smallest memory block into which the job will fit

 Results in least wasted space.

 Slower in making allocation

 For example, for a request of 2 K, if the list contains the blocks of sizes,

1 K, 3 K, 7 K, 2.5 K, 5 K, then it will find the block of size 2.5 K as

suitable block for allocation. From this block after retaining 0.5 K,

pointer for 2 K block will be returned.

 Worst-fit storage allocation

 Slower in making allocation

 Allocates the largest free available block to the new job

 Opposite of best-fit

 Best-fit finds a block which is small and nearest to the block size as

'requested, whereas, worst-fit strategy is a reverse of it. It allocates the

largest block available in the available storage list.

 The idea behind the worst-fit is to reduce the rate of production of small

blocks which are quite common when best-fit strategy is used for

memory allocation.

 Next-fit storage allocation

 The idea behind the worst-fit is to reduce the rate of production of

small blocks which are quite common when best-fit strategy is used for

memory allocation.

 Next-fit allocation strategy is a modification of first-fit strategy.

150

 Starts searching from last allocated block, for the next available block

when a new job arrives.

 In case of first-fit strategy, searching will always occur from beginning

of the free list whereas in next-fit strategy, search begins where the last

allocation has been done; in this strategy, pointer to the free list is saved

following an allocation and is used to begin for the subsequent request.

 The idea of this strategy is to reduce the search by avoiding examination

of smaller blocks that, in long run, tends to be created at the beginning

of the free list as it happens in case of first-fit allocation.

151

CST201 MODULE 4

TREE:

A tree is a hierarchical non-linear data structure defined as a collection of nodes.

Nodes represent value and nodes are connected by edges. A tree has the

following properties:

1. The tree has one node called root. The tree originates from this, and

hence it does not have any parent.

2. Each node has one parent only but can have multiple children.

3. Each node is connected to its children via edge.

Following diagram explains various terminologies used in a tree structure.

152

Terminology Description Example From Diagram

Root

Root is a special node in a tree. The entire

tree originates from it. It does not have a

parent.

Node A

Parent Node
Parent node is an immediate predecessor of

a node.
B is parent of D & E

Child Node
All immediate successors of a node are its

children.
D & E are children of B

Leaf
Node which does not have any child is

called as leaf
H, I, J, F and G are leaf nodes

Edge

Edge is a connection between one node to

another. It is a line between two nodes or a

node and a leaf.

Line between A & B is edge

Siblings
Nodes with the same parent are called

Siblings.
D & E are siblings

Path /

Traversing

Path is a number of successive edges from

source node to destination node.

 A – B – E – J is path from node A to

E

Height of

Node

Height of a node represents the number of

edges on the longest path between that node

and a leaf.

A, B, C, D & E can have height.

Height of A is no. of edges between

A and H, as that is the longest path,

which is 3. Height of C is 1

Levels of

node

Level of a node represents the generation of

a node. If the root node is at level 0, then its

next child node is at level 1, its grandchild

is at level 2, and so on

Level of H, I & J is 3. Level of D, E,

F & G is 2

Degree of

Node

Degree of a node represents the number of

children of a node.
Degree of D is 2 and of E is 1

153

Sub tree Descendants of a node represent subtree. Nodes D, H, I represent one subtree.

Types of Trees

Types of trees depend on the number of children a node has. There are two major

tree types:

 General Tree: A tree in which there is no restriction on the number of

children a node has, is called a General tree. Examples are Family tree,

Folder Structure.

 Binary Tree: In a Binary tree, every node can have at most 2 children,

left and right. Here, utmost means whether the node has 0 nodes, 1 node

or 2 nodes.

154

Binary trees are further divided into many

types based on its application.

 Full Binary Tree: If every node in a tree has either 0 or 2 children, then

the tree is called a full tree.

 Perfect Binary tree: It is a binary tree in which all interior nodes have

two children and all leaves have the same depth or same level.

 Binary Search Tree: It is a binary tree with binary search property.

Binary search property states that the value or key of the left node is less

than its parent and value or key of right node is greater than its parent.

And this is true for all nodes.

155

Applications of trees

The following are the applications of trees:

o Storing naturally hierarchical data: Trees are used to store the data in the

hierarchical structure. For example, the file system. The file system stored on

the disc drive, the file and folder are in the form of the naturally hierarchical

data and stored in the form of trees.

o Organize data: It is used to organize data for efficient insertion, deletion and

searching. For example, a binary tree has a logN time for searching an

element.

o Trie: It is a special kind of tree that is used to store the dictionary. It is a fast

and efficient way for dynamic spell checking.

o Heap: It is also a tree data structure implemented using arrays. It is used to

implement priority queues.

o B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to

implement indexing in databases.

o Routing table: The tree data structure is also used to store the data in routing

tables in the routers.

156

Implementation of Tree

The tree data structure can be created by creating the nodes dynamically with the

help of the pointers. The tree in the memory can be represented as shown below:

The

above figure shows the representation of the tree data structure in the memory. In

the above structure, the node contains three fields. The second field stores the data;

the first field stores the address of the left child, and the third field stores the address

of the right child.

In programming, the structure of a node can be defined as:

struct node

{

int data;

struct node *leftChild;

struct node *rightChild;

};

Binary Search Tree Basic Operations

157

The basic operations that can be performed on a binary search tree data structure,

are the following −

 Insert − Inserts an element in a tree/create a tree.

 Search − Searches an element in a tree.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be

inserted, first locate its proper location. Start searching from the root node, then if

the data is less than the key value, search for the empty location in the left subtree

and insert the data. Otherwise, search for the empty location in the right subtree and

insert the data.

Algorithm

Step 1: Start

Step 2:If root is NULL

 then create root node

 return

Step 3:If root exists then

 compare the data with node.data

Step 4:while until insertion position is located

Step 4.1:If data is greater than node.data

 goto right subtree

Step 4.2:else

 goto left subtree

Step 5:endwhile

Step 6:insert data

end If

158

Step 7: Stop

Program

void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct

node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty, create root node

 if(root == NULL) {

 root = tempNode;

 } else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }

 //go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

159

Search Operation

Whenever an element is to be searched, start searching from the root node, then if

the data is less than the key value, search for the element in the left subtree.

Otherwise, search for the element in the right subtree. Follow the same algorithm

for each node.

Algorithm

Step 1: Start

Step 2:If root.data is equal to search.data

 return root

Step 3:else

 while data not found

Step 3.1:If data is greater than node.data

 goto right subtree

Step 3.2:else

 goto left subtree

Step 4:If data found

 return node

 endwhile

Step 5:return data not found

end if

Step 6: Stop

Program

struct node* search(int data) {

 struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data) {

 if(current != NULL)

160

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data) {

 current = current->leftChild;

 }

 //else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL) {

 return NULL;

 }

 return current;

 }

}

Tree Traversals

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root

(head) node. That is, we cannot randomly access a node in a tree. There are three

ways which we use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

161

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the

right sub-tree. We should always remember that every node may represent a subtree

itself.

If a binary tree is traversed in-order, the output will produce sorted key values in

an ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is

also traversed in-order. The process goes on until all the nodes are visited. The

output of inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm:

Step 1: Start

Step 2: Until all nodes are traversed

Step 3: Recursively traverse left subtree.

162

Step 4: Visit root node.

Step 5: Recursively traverse right subtree.

Step 6: Stop

Program:

void inorder_traversal(struct node* root) {

 if(root != NULL) {

 inorder_traversal(root->leftChild);

 printf("%d ",root->data);

 inorder_traversal(root->rightChild);

 }

}

Pre-order Traversal

163

In this traversal method, the root node is visited first, then the left subtree and

finally the right subtree.

We start from A, and following pre-order traversal, we first visit A itself and then

move to its left subtree B. B is also traversed pre-order. The process goes on until

all the nodes are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm:

Step 1: Start

Step 2: Until all nodes are traversed

Step 3: Visit root node.

Step 4: Recursively traverse left subtree.

Step 5: Recursively traverse right subtree.

Step 6: Stop

164

Program:

void pre_order_traversal(struct node* root) {

 if(root != NULL) {

 printf("%d ",root->data);

 pre_order_traversal(root->leftChild);

 pre_order_traversal(root->rightChild);

 }

}

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we

traverse the left subtree, then the right subtree and finally the root node.

We start from A, and following Post-order traversal, we first visit the left

subtree B. B is also traversed post-order. The process goes on until all the nodes are

visited. The output of post-order traversal of this tree will be −

D → E → B → F → G → C → A

165

Algorithm

Step 1: Start

Step 2: Until all nodes are traversed

Step 3: Recursively traverse left subtree.

Step 4: Recursively traverse right subtree.

Step 5: Visit root node.

Step 6: Stop

Program:

void post_order_traversal(struct node* root) {

 if(root != NULL) {

 post_order_traversal(root->leftChild);

 post_order_traversal(root->rightChild);

 printf("%d ", root->data);

 }

}

166

GRAPH:

 A graph can be defined as group of vertices and edges that are used to connect

these vertices. A graph can be seen as a cyclic tree, where the vertices (Nodes)

maintain any complex relationship among them instead of having parent child

relationship.

 Mathematical graphs can be represented in data structure. We can represent a

graph using an array of vertices and a two-dimensional array of edges.

Directed and Undirected Graph

 A graph can be directed or undirected. However, in an undirected graph, edges

are not associated with the directions with them. An undirected graph is shown

in the below figure since its edges are not attached with any of the directions.

If an edge exists between vertex A and B then the vertices can be traversed

from B to A as well as A to B.

 In a directed graph, edges form an ordered pair. Edges represent a specific

path from some vertex A to another vertex B. Node A is called initial node

167

while node B is called terminal node. A directed graph is shown in the

following figure.

 Before we proceed further, let's familiarize ourselves with some important

terms −

 Vertex − Each node of the graph is represented as a vertex.

 Edge − Edge represents a path between two vertices or a line between

two vertices.

 Adjacency − Two node or vertices are adjacent if they are connected

to each other through an edge.

 Path − Path represents a sequence of edges between the two vertices.

 Closed Path - A path will be called as closed path if the initial node is

same as terminal node. A path will be closed path if V0=VN.

 Simple Path - If all the nodes of the graph are distinct with an

exception V0=VN, then such path P is called as closed simple path.

 Cycle - A cycle can be defined as the path which has no repeated edges

or vertices except the first and last vertices.

168

 Connected Graph - A connected graph is the one in which some path

exists between every two vertices (u, v) in V. There are no isolated

nodes in connected graph.

 Weighted Graph - In a weighted graph, each edge is assigned with

some data such as length or weight. The weight of an edge e can be

given as w(e) which must be a positive (+) value indicating the cost of

traversing the edge.

 Degree of the Node - A degree of a node is the number of edges that

are connected with that node. A node with degree 0 is called as isolated

node.

Application of Graph in Data Structure

Graphs data structure have a variety of applications. Some of the most popular

applications are:

 Helps to define the flow of computation of software programs.

 Used in Google maps for building transportation systems. In google maps, the

intersection of two or more roads represents the node while the road

connecting two nodes represents an edge. Google maps algorithm uses graphs

to calculate the shortest distance between two vertices.

 Used in social networks such as Facebook and Linkedin.

 Operating Systems use Resource Allocation Graph where every process and

resource acts as a node while edges are drawn from resources to the allocated

process.

 Used in the world wide web where the web pages represent the nodes.

https://www.naukri.com/learning/what-is-operating-system-st617

169

 Blockchains also use graphs. The nodes are blocks that store many

transactions while the edges connect subsequent blocks.

 Used in modeling data.

Breadth First Search in Data Structure

Traversal means to visit each node of a graph. For graphs, there are two types of

traversals: Depth First traversal and Breadth-First traversal. In this article, we are

going to study Breadth-first traversal or BFS in detail.

What is Breadth First Search?

Breadth First Search is a traversal technique in which we traverse all the nodes of

the graph in a breadth-wise motion. In BFS, we traverse one level at a time and then

jump to the next level.

In a graph, the traversal can start from any node and cover all the nodes level-wise.

The BFS algorithm makes use of the queue data structure for implementation. In

BFS, we always reach the final goal state (which was not always the case for DFS).

Algorithm for BFS:

Step 1: Choose any one node randomly, to start traversing.

Step 2: Visit its adjacent unvisited node.

Step 3: Mark it as visited in the boolean array and display it.

Step 4: Insert the visited node into the queue.

Step 5: If there is no adjacent node, remove the first node from the queue.

Step 6: Repeat the above steps until the queue is empty.

https://www.naukri.com/learning/what-is-blockchain-st561

170

Working of Breadth First Search:

Consider the following graph having 8 nodes named as A, B, C, D, E, F, G and H as

shown:

Initially, the queue will be empty.

Let us start traversing the graph from node A. Once we visit node A, we mark it as

visited and also place it inside the queue as shown:

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2021/07/TV-BFS-normal-image01.jpg

171

The next step is to traverse its adjacent nodes i.e. B and C and place them inside the

queue. When we place the adjacent node of A in the queue, we will remove A from

the queue and display it in the output array as shown:

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2021/07/TV-BFS-normal-image02.jpg

172

Next, we don’t have any more adjacent nodes for A. therefore, we will remove

node B from the queue and place its adjacent nodes into the queue. Similarly,

we will traverse the nodes of C and put them into the queue

The next adjacent node is node H. thus, we will traverse that as well and place

it in the queue. Once all the nodes have entered the queue, we will start

removing them from the queue and putting them into the output array.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2021/07/TV-BFS-normal-image03.jpg

173

Thus, slowly the queue starts decreasing in size and the output array will be full

as shown:

174

Complexity of BFS

Time complexity: Since we are visiting all the nodes exactly once, therefore, the

time complexity is O(V+E). Here, O(E) may vary between O(1) and O(V2). Thus,

in the worst case, the time complexity of BFS is O(V2).

Space complexity: The space complexity of the BFS algorithm is O(V) where V

denotes vertices/nodes of the graph.

Applications of Breadth First Search

 To find the shortest path between two edges when the path length is equivalent

to the number of edges.

 To check whether a graph is bipartite or not

 To copy garbage collection by Cheney’s algorithm

 Used in unweighted graphs to find the minimum cost spanning tree

 To form peer-to-peer network connections

 To find neighboring locations in the GPS navigation system

 To detect cycle in an undirected graph

 To broadcast packets in a network

 To find all the nodes within one connected component in an otherwise

disconnected graph

175

Depth First Search in Data Structure

Depth First Search is a traversal technique in which we follow a depth-wise motion

to traverse all the nodes. This technique is based on backtracking.

What is DFS:

Depth first search is a recursive technique to traverse all the nodes of a graph. It

makes use of the stack data structure for traversing and remembering the nodes.

DFS follows the backtracking approach i.e. whenever there are no more nodes in the

current path, it goes back to the initial node and starts traversing the next available

path.

While using the stack, we first choose the initial node and push all its adjacent nodes

into the stack. To visit a node, we pop a node from the stack and push all its adjacent

nodes to the stack.

This goes on until all the nodes are popped out i.e. the stack is empty. In the whole

process, we need to make sure that we don’t visit the same node more than once,

especially if the cycle exists. The output of DFS is always in the form of a spanning

tree.

Algorithm:

Step 1: Algorithm DFS(vertex v)

Step 2: visited[v] = 1

Step 3: for all nodes ‘w’ adjacent to v:

if(visited[w] == 0):

DFS(w)

176

Step 4: End for loop

Step 5: End DFS

Working of DFS:

Before looking at the working of the algorithm, let us first understand the following

terms:

 Visit: It means we reached the node or we are reaching the node.

 Explore: It means processing every child of the node.

 Discovery: This term is used when we visit a node for the first time.

In DFS, we can take any node as the initial node and start traversing its adjacent

nodes. Let us see the working of DFS with the help of the following example:

Let’s start with node A. once we reach the child of A, we start exploring the

grandchild of A i.e. the child of B and so on. In this manner, we will traverse the

whole graph.

177

We go from A to B to D to H. when we reach H, we have 3 choices: E, F, G. We can

choose to go with any of them. Let us go with F. from F, we got to C as C is the only

unvisited node of F.

Similarly, from C we will visit G. Now G does not have any unvisited node.

Therefore, G is the dead node and we will backtrack from here.

Thus, the spanning tree formed by following this path will be:

178

The push and pop operations in the stack will be:

Thus, the path followed is A→B→D→H→F→C→G→E. We need to note that there

could multiple paths for the same graph depending upon which node is traversed

first.

Complexity Analysis for DFS:

Time complexity: We need to traverse the whole graph while implementing DFS.

therefore, its time complexity is O(V + E).

Space complexity: The algorithm makes use of an extra array. Therefore, in the

worst case, the space complexity is O(V).

179

Applications of DFS:

 Finding the number of connected components in a disconnected graph

 Detecting a cycle in a graph

 Finding all the articulation points in a graph

 Finding whether a graph is biconnected or not

 For finding strongly connected components in a graph

 To find bridges in a graph

 For topological sorting

 To solve puzzles with only one solution (Eg- mazes)

180

CST201 MODULE 5

SORTING TECHNIQUES:

• Sorting refers to the operation or technique of arranging and rearranging sets

of data in some specific order. A collection of records called a list where every

record has one or more fields.

• Sorting is the operation performed to arrange the records of a table or list in

some order according to some specific ordering criterion. Sorting is performed

according to some key value of each record.

Complexity of Sorting Algorithm

• The complexity of sorting algorithm calculates the running time of a function

in which 'n' number of items are to be sorted. The choice for which sorting

method is suitable for a problem depends on several dependency

configurations for different problems. The most noteworthy of these

considerations are:

• The length of time spent by the programmer in programming a specific

sorting program

• Amount of machine time necessary for running the program

• The amount of memory necessary for running the program

• Various sorting techniques are analyzed in various cases and named these

cases as follows:

• Best case

• Worst case

181

• Average case

SELECTION SORT

• Selection sort is a simple sorting algorithm.

• This sorting algorithm is an in-place comparison-based algorithm in which the

list is divided into two parts, the sorted part at the left end and the unsorted

part at the right end.

• Initially, the sorted part is empty and the unsorted part is the entire list.

• The smallest element is selected from the unsorted array and swapped with

the leftmost element, and that element becomes a part of the sorted array.

• This process continues moving unsorted array boundary by one element to the

right.

• This algorithm is not suitable for large data sets as its average and worst case

complexities are of Ο(n2), where n is the number of items.

• Consider the following

 For the first position in the sorted list, the whole list is scanned sequentially.

The first position where 14 is stored presently, we search the whole list and

find that 10 is the lowest value.

182

 So we replace 14 with 10. After one iteration 10, which happens to be the

minimum value in the list, appears in the first position of the sorted list.

 For the second position, where 33 is residing, we start scanning the rest of the

list in a linear manner.

 We find that 14 is the second lowest value in the list and it should appear at

the second place. We swap these values.

 After two iterations, two least values are positioned at the beginning in a

sorted manner.

183

The scenario will perform as follows:

184

Program for selection sort

#include <stdio.h>

int main()

{

 int arr[10]={6,12,0,18,11,99,55,45,34,2};

 int n=10;

 int i, j, position, temp;

 for (i = 0; i < (n - 1); i++)

 {

 position = i;

 for (j = i + 1; j < n; j++)

 {

 if (arr[position] > arr[j])

 position = j;

 }

 if (position != i)

 {

 temp = arr[i];

 arr[i] = arr[position];

 arr[position] = temp;

 }

 }

 for (i = 0; i < n; i++)

185

 printf("%d\t", arr[i]);

 return 0;

}

Time Complexity

Case Time Complexity

Best Case O(n2)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the

array is already sorted. The best-case time complexity of selection sort

is O(n2).

o Average Case Complexity - It occurs when the array elements are in jumbled

order that is not properly ascending and not properly descending. The average

case time complexity of selection sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to

be sorted in reverse order. That means suppose you have to sort the array

elements in ascending order, but its elements are in descending order. The

worst-case time complexity of selection sort is O(n2).

186

INSERTION SORT

• Insertion sort works similar to the sorting of playing cards in hands.

• It is assumed that the first card is already sorted in the card game, and then we

select an unsorted card.

• If the selected unsorted card is greater than the first card, it will be placed at

the right side; otherwise, it will be placed at the left side.

• Similarly, all unsorted cards are taken and put in their exact place.

• The same approach is applied in insertion sort.

• The idea behind the insertion sort is that first take one element, iterate it

through the sorted array.

• Although it is simple to use, it is not appropriate for large data sets as the time

complexity of insertion sort in the average case and worst case is O(n2), where

n is the number of items.

• Insertion sort is less efficient than the other sorting algorithms like heap sort,

quick sort, merge sort, etc.

• Insertion sort has various advantages such as –

• Simple implementation

• Efficient for small data sets

• Adaptive, i.e., it is appropriate for data sets that are already substantially

sorted.

187

Working of Insertion sort Algorithm

Let the elements of array are –

Initially, the first two elements are compared in insertion sort.

Here, 31 is greater than 12. That means both elements are already in ascending

order. So, for now, 12 is stored in a sorted sub-array.

Now, move to the next two elements and compare them.

Here, 25 is smaller than 31. So, 31 is not at correct position. Now, swap 31 with

25. Along with swapping, insertion sort will also check it with all elements in the

sorted array.

188

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12.

Hence, the sorted array remains sorted after swapping.

Now, two elements in the sorted array are 12 and 25. Move forward to the next

elements that are 31 and 8.

Both 31 and 8 are not sorted. So, swap them.

After swapping, elements 25 and 8 are unsorted.

189

So, swap them.

Now, elements 12 and 8 are unsorted.

So, swap them too.

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items

that are 31 and 32.

Hence, they are already sorted. Now, the sorted array includes 8, 12, 25 and 31.

Move to the next elements that are 32 and 17

190

17 is smaller than 32. So, swap them.

Swapping makes 31 and 17 unsorted. So, swap them too.

Now, swapping makes 25 and 17 unsorted. So, perform swapping again.

Now, the array is completely sorted.

Algorithm

191

The simple steps of achieving the insertion sort are listed as follows -

Step 1 - If the element is the first element, assume that it is already sorted. Return

1.

Step2 - Pick the next element, and store it separately in a key.

Step3 - Now, compare the key with all elements in the sorted array.

Step 4 - If the element in the sorted array is smaller than the current element, then

move to the next element. Else, shift greater elements in the array towards the

right.

Step 5 - Insert the value.

Step 6 - Repeat until the array is sorted.

Program

#include<stdio.h>

int main()

{

/* Here i & j for loop counters, temp for swapping,

count for total number of elements, number[] to

* store the input numbers in array. You can increase

* or decrease the size of number array as per requirement

*/

 int i, j, count, temp, number[25];

 printf("How many numbers u are going to enter?: ");

192

 scanf("%d",&count);

 printf("Enter %d elements: ", count);

// This loop would store the input numbers in array

 for(i=0;i<count;i++)

 scanf("%d",&number[i]);

// Implementation of insertion sort algorithm

 for(i=1;i<count;i++)

 {

 temp=number[i];

 j=i-1;

 while((temp<number[j])&&(j>=0))

 {

 number[j+1]=number[j];

 j=j-1;

 }

 number[j+1]=temp;

 }

printf("Order of Sorted elements: ");

for(i=0;i<count;i++)

printf(" %d",number[i]);

return 0;

}

193

Time Complexity

Case Time Complexity

Best Case O(n)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the

array is already sorted. The best-case time complexity of insertion sort is O(n).

o Average Case Complexity - It occurs when the array elements are in jumbled

order that is not properly ascending and not properly descending. The average

case time complexity of insertion sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to

be sorted in reverse order. That means suppose you have to sort the array

elements in ascending order, but its elements are in descending order. The

worst-case time complexity of insertion sort is O(n2).

QUICK SORT

• Quicksort is the widely used sorting algorithm that makes n log n comparisons

in average case for sorting an array of n elements.

• It is a faster and highly efficient sorting algorithm.

• This algorithm follows the divide and conquer approach.

• Divide and conquer is a technique of breaking down the algorithms into

subproblems, then solving the subproblems, and combining the results back

together to solve the original problem.

194

• Divide: In Divide, first pick a pivot element. After that, partition or rearrange

the array into two sub-arrays such that each element in the left sub-array is

less than or equal to the pivot element and each element in the right sub-array

is larger than the pivot element.

• Conquer: Recursively, sort two subarrays with Quicksort

• Quicksort picks an element as pivot, and then it partitions the given array

around the picked pivot element.

• In quick sort, a large array is divided into two arrays in which one holds values

that are smaller than the specified value (Pivot), and another array holds the

values that are greater than the pivot.

• After that, left and right sub-arrays are also partitioned using the same

approach. It will continue until the single element remains in the sub-array.

Choosing the pivot

• Picking a good pivot is necessary for the fast implementation of quicksort.

However, it is typical to determine a good pivot. Some of the ways of choosing

a pivot are as follows -

• Pivot can be random, i.e. select the random pivot from the given array.

• Pivot can either be the rightmost element of the leftmost element of the

given array.

195

• Select median as the pivot element.

Algorithm

Step 1: Start

Step 2: Consider first element as a pivot element

Step 3: Initialize ‘i’ to low index, ‘j’ to high index

Step 4: Repeat the following steps until i<j

 Step 4.1: Keep on incrementing ‘i‘while a[i] <=pivot

 Step 4.2: Keep on decrementing ‘j’ while a[j]>pivot

 Step 4.3: if i<j then swap (a[i], a[j])

Step 5: If i>j then swap (a[j], pivot), j is the position of pivot

Step 6: Stop

Program

#include<stdio.h>

void quicksort(int number[25],int first,int last)

{

int i, j, pivot, temp;

if(first<last)

{

pivot=first;

i=first;

j=last;

while(i<j)

196

{

while(number[i]<=number[pivot]&&i<last)

i++;

while(number[j]>number[pivot])

j--;

if(i<j)

{

temp=number[i];

number[i]=number[j];

number[j]=temp;

}

}

temp=number[pivot];

number[pivot]=number[j];

number[j]=temp;

quicksort(number,first,j-1);

quicksort(number,j+1,last);

}

}

int main()

{

int i, count, number[25];

printf("How many elements are u going to enter?: ");

197

scanf("%d",&count);

printf("Enter %d elements: ", count);

for(i=0;i<count;i++)

scanf("%d",&number[i]);

quicksort(number,0,count-1);

printf("Order of Sorted elements: ");

for(i=0;i<count;i++)

printf(" %d",number[i]);

return 0; }

Time Complexity

Case Time Complexity

Best Case O(n*logn)

Average Case O(n*logn)

Worst Case O(n2)

o Best Case Complexity - In Quicksort, the best-case occurs when the pivot

element is the middle element or near to the middle element. The best-case

time complexity of quicksort is O(n*logn).

198

o Average Case Complexity - It occurs when the array elements are in jumbled

order that is not properly ascending and not properly descending. The average

case time complexity of quicksort is O(n*logn).

o Worst Case Complexity - In quick sort, worst case occurs when the pivot

element is either greatest or smallest element. Suppose, if the pivot element is

always the last element of the array, the worst case would occur when the

given array is sorted already in ascending or descending order. The worst-case

time complexity of quicksort is O(n2).

MERGE SORT

 Merge sort is similar to the quick sort algorithm as it uses the divide and

conquer approach to sort the elements.

 It is one of the most popular and efficient sorting algorithm. It divides the

given list into two equal halves, calls itself for the two halves and then merges

the two sorted halves.

 We have to define the merge() function to perform the merging.

 The sub-lists are divided again and again into halves until the list cannot be

divided further.

 Then we combine the pair of one element lists into two-element lists, sorting

them in the process.

199

 The sorted two-element pairs is merged into the four-element lists, and so on

until we get the sorted list.

Working of Merge Sort

To understand the working of the merge sort algorithm, let's take an unsorted array.

It will be easier to understand the merge sort via an example.

Let the elements of array are -

According to the merge sort, first divide the given array into two equal halves. Merge

sort keeps dividing the list into equal parts until it cannot be further divided.

As there are eight elements in the given array, so it is divided into two arrays of size

4.

Now, again divide these two arrays into halves. As they are of size 4, so divide them

into new arrays of size 2.

200

Now, again divide these arrays to get the atomic value that cannot be further divided.

Now, combine them in the same manner they were broken

In combining, first compare the element of each array and then combine them into

another array in sorted order.

So, first compare 12 and 31, both are in sorted positions. Then compare 25 and 8,

and in the list of two values, put 8 first followed by 25. Then compare 32 and 17,

sort them and put 17 first followed by 32. After that, compare 40 and 42, and place

them sequentially.

In the next iteration of combining, now compare the arrays with two data values and

merge them into an array of found values in sorted order.

201

Now, there is a final merging of the arrays. After the final merging of above arrays,

the array will look like -

Now, the array is completely sorted.

Program

mergesort(arr[], l, r)

{

 if(l<r)

{

 m=(l+r)/2;

 mergesort(arr,l,m);

 mergesort(arr,m+1,r);

 merge(arr,l,m,r);

}

}

merge(arr,l,m,r)

{

 int i=l,j=m+1,k=1;

 int temp[];

 while(i<=m&&j<=r)

 {

 if(arr[i]<=arr[j])

 {

202

 temp[k]=arr[i];

 i++;

 k++;

 }

 else

 {

 temp[k]=arr[j];

 j++;

 k++;

 }

 }

 while(i<=m)

 {

 temp[k]=arr[i];

 i++;

 k++;

 }

 while(j<=r)

 {

 temp[k]=arr[j];

 j++;

 k++;

 }

 for(int p=l;p<=r;p++)

 {

 arr[p]=temp[p];

 }

}

#include<stdio.h>

int main()

{

 int arr[],l,r,n,i;

 printf(“Enter the number of elements:”);

 scanf(“%d”,&n);

203

 printf(“Enter the elements:”)

 for(i=0;i<n;i++)

 {

 scanf(“%d”,&arr[i]);

 }

 l=0;

 r=n-1;

 mergesort(arr[],l,r);

}

Time Complexity

Case Time Complexity

Best Case O(n*logn)

Average Case O(n*logn)

Worst Case O(n*logn)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the

array is already sorted. The best-case time complexity of merge sort

is O(n*logn).

o Average Case Complexity - It occurs when the array elements are in jumbled

order that is not properly ascending and not properly descending. The average

case time complexity of merge sort is O(n*logn).

o Worst Case Complexity - It occurs when the array elements are required to

be sorted in reverse order. That means suppose you have to sort the array

204

elements in ascending order, but its elements are in descending order. The

worst-case time complexity of merge sort is O(n*logn).

HEAP SORT

 Heap sort processes the elements by creating the min-heap or max-heap using

the elements of the given array. Min-heap or max-heap represents the ordering

of array in which the root element represents the minimum or maximum

element of the array.

 Heap sort basically recursively performs two main operations -

o Build a heap H, using the elements of array.

o Repeatedly delete the root element of the heap formed in 1st phase.

 A heap is a complete binary tree, and the binary tree is a tree in which the

node can have the utmost two children. A complete binary tree is a binary tree

in which all the levels except the last level, i.e., leaf node, should be

completely filled, and all the nodes should be left-justified.

 There are two variants of a heap: max-heap and min-heap. The heap

properties change a bit with each variant.

 According to the heap property, the key or value of each node in a heap

is always greater than its children nodes, and the key or value of the root

node is always the largest in the heap tree.

205

 The heap property for min-heap states that the value or key of each child

node is always greater than its parent node, and the value of the root node

is always the smallest in the heap.

Working of Heap sort Algorithm

In heap sort, basically, there are two phases involved in the sorting of elements. By

using the heap sort algorithm, they are as follows -

o The first step includes the creation of a heap by adjusting the elements of the

array.

o After the creation of heap, now remove the root element of the heap repeatedly

by shifting it to the end of the array, and then store the heap structure with the

remaining elements.

Let’s take an example:

First, we have to construct a heap from the given array and convert it into max heap.

206

After converting the given heap into max heap, the array elements are -

Next, we have to delete the root element (89) from the max heap. To delete this node,

we have to swap it with the last node, i.e. (11). After deleting the root element, we

again have to heapify it to convert it into max heap.

After swapping the array element 89 with 11, and converting the heap into max-

heap, the elements of array are -

In the next step, again, we have to delete the root element (81) from the max heap.

To delete this node, we have to swap it with the last node, i.e. (54). After deleting

the root element, we again have to heapify it to convert it into max heap.

207

After swapping the array element 81 with 54 and converting the heap into max-heap,

the elements of array are –

In the next step, we have to delete the root element (76) from the max heap again.

To delete this node, we have to swap it with the last node, i.e. (9). After deleting the

root element, we again have to heapify it to convert it into max heap.

208

After swapping the array element 76 with 9 and converting the heap into max-heap,

the elements of array are –

In the next step, again we have to delete the root element (54) from the max heap.

To delete this node, we have to swap it with the last node, i.e. (14). After deleting

the root element, we again have to heapify it to convert it into max heap.

After swapping the array element 54 with 14 and converting the heap into max-heap,

the elements of array are –

In the next step, again we have to delete the root element (22) from the max heap.

To delete this node, we have to swap it with the last node, i.e. (11). After deleting

the root element, we again have to heapify it to convert it into max heap.

209

After swapping the array element 22 with 11 and converting the heap into max-heap,

the elements of array are -

In the next step, again we have to delete the root element (14) from the max heap.

To delete this node, we have to swap it with the last node, i.e. (9). After deleting the

root element, we again have to heapify it to convert it into max heap.

After swapping the array element 14 with 9 and converting the heap into max-heap,

the elements of array are –

210

In the next step, again we have to delete the root element (11) from the max heap.

To delete this node, we have to swap it with the last node, i.e. (9). After deleting the

root element, we again have to heapify it to convert it into max heap.

After swapping the array element 11 with 9, the elements of array are –

Now, heap has only one element left. After deleting it, heap will be empty.

After completion of sorting, the array elements are -

Now, the array is completely sorted.

211

Algorithm

Step 1 - Start

Step 2 - Construct a Binary Tree with given list of Elements.

Step 3 - Transform the Binary Tree into Max Heap.

Step 4 - Delete the root element from Max Heap using Heapify method.

Step 5 - Put the deleted element into the Sorted list.

Step 6 - Repeat the same until Max Heap becomes empty.

Step 7 - Display the sorted list

Step 8 – Stop

Time Complexity

Case Time Complexity

Best Case O(n logn)

Average Case O(n log n)

Worst Case O(n log n)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the

array is already sorted. The best-case time complexity of heap sort is O(n

logn).

212

o Average Case Complexity - It occurs when the array elements are in jumbled

order that is not properly ascending and not properly descending. The average

case time complexity of heap sort is O(n log n).

o Worst Case Complexity - It occurs when the array elements are required to

be sorted in reverse order. That means suppose you have to sort the array

elements in ascending order, but its elements are in descending order. The

worst-case time complexity of heap sort is O(n log n).

Program

#include <stdio.h>

/* function to heapify a subtree. Here 'i' is the

index of root node in array a[], and 'n' is the size of heap. */

void heapify(int a[], int n, int i)

{

 int largest = i; // Initialize largest as root

 int left = 2 * i + 1; // left child

 int right = 2 * i + 2; // right child

 // If left child is larger than root

 if (left < n && a[left] > a[largest])

 largest = left;

 // If right child is larger than root

 if (right < n && a[right] > a[largest])

 largest = right;

 // If root is not largest

 if (largest != i) {

 // swap a[i] with a[largest]

 int temp = a[i];

 a[i] = a[largest];

 a[largest] = temp;

213

 heapify(a, n, largest);

 }

}

/*Function to implement the heap sort*/

void heapSort(int a[], int n)

{

 for (int i = n / 2 - 1; i >= 0; i--)

 heapify(a, n, i);

 // One by one extract an element from heap

 for (int i = n - 1; i >= 0; i--) {

 /* Move current root element to end*/

 // swap a[0] with a[i]

 int temp = a[0];

 a[0] = a[i];

 a[i] = temp;

 heapify(a, i, 0);

 }

}

/* function to print the array elements */

void printArr(int arr[], int n)

{

 for (int i = 0; i < n; ++i)

 {

 printf("%d", arr[i]);

 printf(" ");

 }

}

int main()

{

 int a[] = {48, 10, 23, 43, 28, 26, 1};

 int n = sizeof(a) / sizeof(a[0]);

 printf("Before sorting array elements are - \n");

214

 printArr(a, n);

 heapSort(a, n);

 printf("\nAfter sorting array elements are - \n");

 printArr(a, n);

 return 0;

}

HASHING

 Hashing is an important data structure designed to solve the problem of

efficiently finding and storing data in an array.

 For example, if you have a list of 20000 numbers, and you have given a

number to search in that list- you will scan each number in the list until you

find a match.

 It requires a significant amount of your time to search in the entire list and

locate that specific number.

 This manual process of scanning is not only time-consuming but inefficient

too.

 With hashing in the data structure, you can narrow down the search and find

the number within seconds.

What is Hashing in Data Structure?

 Hashing in the data structure is a technique of mapping a large chunk of data

into small tables using a hashing function.

 It is also known as the message digest function. It is a technique that uniquely

identifies a specific item from a collection of similar items.

https://www.upgrad.com/blog/data-structure-project-ideas-beginners/
https://www.upgrad.com/blog/graphs-in-data-structure/

215

 It uses hash tables to store the data in an array format. Each value in the array

has assigned a unique index number.

 Hash tables use a technique to generate these unique index numbers for each

value stored in an array format. This technique is called the hash technique.

 You only need to find the index of the desired item, rather than finding the

data.

 With indexing, you can quickly scan the entire list and retrieve the item you

wish.

 Indexing also helps in inserting operations when you need to insert data at a

specific location. No matter how big or small the table is, you can update and

retrieve data within seconds.

 Hashing in a data structure is a two-step process.

o The hash function converts the item into a small integer or hash value.

This integer is used as an index to store the original data.

o It stores the data in a hash table. You can use a hash key to locate data

quickly.

Hash Function

 The hash function in a data structure maps arbitrary size of data to fixed-sized

data.

 It returns the following values: a small integer value (also known as hash

value), hash codes, and hash sums.

 The has function must satisfy the following requirements:

o A good hash function is easy to compute.

o A good hash function never gets stuck in clustering and distributes

keys evenly across the hash table.

216

o A good hash function avoids collision when two elements or items

get assigned to the same hash value.

Hash Table

 Hash table is one of the most important data structures that uses a special

function known as a hash function that maps a given value with a key to access

the elements faster.

 A Hash table is a data structure that stores some information, and the

information has basically two main components, i.e., key and value.

 The hash table can be implemented with the help of an associative array.

 The efficiency of mapping depends upon the efficiency of the hash function

used for mapping.

 Drawback of Hash function is that hash function assigns each value with a

unique key. Sometimes hash table uses an imperfect hash function that causes

a collision because the hash function generates the same key of two different

values.

217

 There are three ways of calculating the hash function:

o Division method

o Folding method

o Mid square method

Collision

 When the two different values have the same value, then the problem occurs

between the two values, known as a collision.

 For example, if the key value is 6 and the size of the hash table is 10. When

we apply the hash function to key 6 then the index would be:

h(6) = 6%10 = 6

The index is 6 at which the value is stored.

 In the above example, the value is stored at index 6. If the key value is 26,

then the index would be:

h(26) = 26%10 = 6

 Therefore, two values are stored at the same index, i.e., 6, and this leads to the

collision problem. To resolve these collisions, we have some techniques

known as collision techniques.

 The following are the collision techniques:

o Open Hashing: It is also known as closed addressing.

o Closed Hashing: It is also known as open addressing.

218

Open Hashing

 In Open Hashing, one of the methods used to resolve the collision is known

as a chaining method.

 Let's first understand the chaining to resolve the collision.

Suppose we have a list of key values

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

In this case, we cannot directly use h(k) = ki/m as h(k) = 2k+3

 The index of key value 3 is:

index = h(3) = (2(3)+3)%10 = 9

The value 3 would be stored at the index 9.

 The index of key value 2 is:

219

index = h(2) = (2(2)+3)%10 = 7

The value 2 would be stored at the index 7.

 The index of key value 9 is:

index = h(9) = (2(9)+3)%10 = 1

The value 9 would be stored at the index 1.

 The index of key value 6 is:

index = h(6) = (2(6)+3)%10 = 5

The value 6 would be stored at the index 5.

 The index of key value 11 is:

index = h(11) = (2(11)+3)%10 = 5

The value 11 would be stored at the index 5. Now, we have two values

(6, 11) stored at the same index, i.e., 5. This leads to the collision problem, so

we will use the chaining method to avoid the collision. We will create one

more list and add the value 11 to this list. After the creation of the new list,

the newly created list will be linked to the list having value 6.

 The index of key value 13 is:

index = h(13) = (2(13)+3)%10 = 9

The value 13 would be stored at index 9. Now, we have two values (3,

13) stored at the same index, i.e., 9. This leads to the collision problem, so we

220

will use the chaining method to avoid the collision. We will create one more

list and add the value 13 to this list. After the creation of the new list, the

newly created list will be linked to the list having value 3.

 The index of key value 7 is:

index = h(7) = (2(7)+3)%10 = 7

The value 7 would be stored at index 7. Now, we have two values (2,

7) stored at the same index, i.e., 7. This leads to the collision problem, so we

will use the chaining method to avoid the collision. We will create one more

list and add the value 7 to this list. After the creation of the new list, the newly

created list will be linked to the list having value 2.

 The index of key value 12 is:

index = h(12) = (2(12)+3)%10 = 7

According to the above calculation, the value 12 must be stored at index

7, but the value 2 exists at index 7. So, we will create a new list and add 12 to

the list. The newly created list will be linked to the list having a value 7.

The calculated index value associated with each key value is shown in the below

table:

key Location(u)

3 ((2*3)+3)%10 = 9

2 ((2*2)+3)%10 = 7

9 ((2*9)+3)%10 = 1

6 ((2*6)+3)%10 = 5

221

11 ((2*11)+3)%10 = 5

13 ((2*13)+3)%10 = 9

7 ((2*7)+3)%10 = 7

12 ((2*12)+3)%10 = 7

Closed Hashing

In Closed hashing, three techniques are used to resolve the collision:

1. Linear probing

2. Quadratic probing

3. Double Hashing technique

Linear Probing

 Linear probing is one of the forms of open addressing.

 As we know that each cell in the hash table contains a key-value pair, so when

the collision occurs by mapping a new key to the cell already occupied by

another key, then linear probing technique searches for the closest free

locations and adds a new key to that empty cell.

 In this case, searching is performed sequentially, starting from the position

where the collision occurs till the empty cell is not found.

 Let's understand the linear probing through an example.

Consider the above example for the linear probing:

222

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

 The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5 respectively.

The calculated index value of 11 is 5 which is already occupied by another

key value, i.e., 6. When linear probing is applied, the nearest empty cell to

the index 5 is 6; therefore, the value 11 will be added at the index 6.

 The next key value is 13. The index value associated with this key value is

9 when hash function is applied. The cell is already filled at index 9. When

linear probing is applied, the nearest empty cell to the index 9 is 0;

therefore, the value 13 will be added at the index 0.

 The next key value is 7. The index value associated with the key value is

7 when hash function is applied. The cell is already filled at index 7. When

linear probing is applied, the nearest empty cell to the index 7 is 8;

therefore, the value 7 will be added at the index 8.

 The next key value is 12. The index value associated with the key value is

7 when hash function is applied. The cell is already filled at index 7. When

linear probing is applied, the nearest empty cell to the index 7 is 2;

therefore, the value 12 will be added at the index 2.

 The final hash table would be:

0 13

1 9

2 12

3

4

5 6

223

6 11

7 2

8 7

9 3

Quadratic Probing

 In case of linear probing, searching is performed linearly.

 In contrast, quadratic probing is an open addressing technique that uses

quadratic polynomial for searching until a empty slot is found.

 It can also be defined as that it allows the insertion ki at first free location

from (u+i2)%m where i=0 to m-1.

Let's understand the quadratic probing through an example.

Consider the same example which we discussed in the linear probing.

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

o The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5, respectively. We

do not need to apply the quadratic probing technique on these key values as

there is no occurrence of the collision.

o The index value of 11 is 5, but this location is already occupied by the 6. So,

we apply the quadratic probing technique.

When i = 0

Index= (5+02)%10 = 5

224

When i=1

Index = (5+12)%10 = 6

Since location 6 is empty, so the value 11 will be added at the index 6.

o The next element is 13. When the hash function is applied on 13, then the

index value comes out to be 9, which we already discussed in the chaining

method. At index 9, the cell is occupied by another value, i.e., 3. So, we will

apply the quadratic probing technique to calculate the free location.

When i=0

Index = (9+02)%10 = 9

When i=1

Index = (9+12)%10 = 0

Since location 0 is empty, so the value 13 will be added at the index 0.

o The next element is 7. When the hash function is applied on 7, then the index

value comes out to be 7, which we already discussed in the chaining method.

At index 7, the cell is occupied by another value, i.e., 7. So, we will apply the

quadratic probing technique to calculate the free location.

When i=0

Index = (7+02)%10 = 7

When i=1

225

Index = (7+12)%10 = 8

Since location 8 is empty, so the value 7 will be added at the index 8.

o The next element is 12. When the hash function is applied on 12, then the

index value comes out to be 7. When we observe the hash table then we will

get to know that the cell at index 7 is already occupied by the value 2. So, we

apply the Quadratic probing technique on 12 to determine the free location.

When i=0

Index= (7+02)%10 = 7

When i=1

Index = (7+12)%10 = 8

When i=2

Index = (7+22)%10 = 1

When i=3

Index = (7+32)%10 = 6

When i=4

Index = (7+42)%10 = 3

Since the location 3 is empty, so the value 12 would be stored at the index 3.

 The final hash table would be:

226

Double Hashing

 Double hashing is an open addressing technique which is used to avoid the

collisions.

 When the collision occurs then this technique uses the secondary hash of the

key.

 It uses one hash value as an index to move forward until the empty location is

found.

 In double hashing, two hash functions are used.

 Suppose h1(k) is one of the hash functions used to calculate the locations

whereas h2(k) is another hash function.

 It can be defined as "insert ki at first free place from (u+v*i)%m where i=(0

to m-1)".

 In this case, u is the location computed using the hash function and v is equal

to (h2(k)%m).

 Consider the same example that we use in quadratic probing.

227

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and

h1(k) = 2k+3

h2(k) = 3k+1

key Location (u) v

3 ((2*3)+3)%10 = 9 -

2 ((2*2)+3)%10 = 7 -

9 ((2*9)+3)%10 = 1 -

6 ((2*6)+3)%10 = 5 -

11 ((2*11)+3)%10 = 5 (3(11)+1)%10 =4

13 ((2*13)+3)%10 = 9 (3(13)+1)%10 = 0

7 ((2*7)+3)%10 = 7 (3(7)+1)%10 = 2

12 ((2*12)+3)%10 = 7 (3(12)+1)%10 = 7

o As we know that no collision would occur while inserting the keys (3, 2, 9,

6), so we will not apply double hashing on these key values.

o On inserting the key 11 in a hash table, collision will occur because the

calculated index value of 11 is 5 which is already occupied by some another

value. Therefore, we will apply the double hashing technique on key 11. When

the key value is 11, the value of v is 4.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (5+4*0)%10 =5

When i=1

Index = (5+4*1)%10 = 9

228

When i=2

Index = (5+4*2)%10 = 3

o Since the location 3 is empty in a hash table; therefore, the key 11 is added at

the index 3.

o The next element is 13. The calculated index value of 13 is 9 which is already

occupied by some another key value. So, we will use double hashing

technique to find the free location. The value of v is 0.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (9+0*0)%10 = 9

o We will get 9 value in all the iterations from 0 to m-1 as the value of v is zero.

Therefore, we cannot insert 13 into a hash table.

o The next element is 7. The calculated index value of 7 is 7 which is already

occupied by some another key value. So, we will use double hashing

technique to find the free location. The value of v is 2.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (7 + 2*0)%10 = 7

When i=1

Index = (7+2*1)%10 = 9

When i=2

229

Index = (7+2*2)%10 = 1

When i=3

Index = (7+2*3)%10 = 3

When i=4

Index = (7+2*4)%10 = 5

When i=5

Index = (7+2*5)%10 = 7

When i=6

Index = (7+2*6)%10 = 9

When i=7

Index = (7+2*7)%10 = 1

When i=8

Index = (7+2*8)%10 = 3

When i=9

Index = (7+2*9)%10 = 5

o Since we checked all the cases of i (from 0 to 9), but we do not find suitable

place to insert 7. Therefore, key 7 cannot be inserted in a hash table.

230

o The next element is 12. The calculated index value of 12 is 7 which is already

occupied by some another key value. So, we will use double hashing

technique to find the free location. The value of v is 7.

o Now, substituting the values of u and v in (u+v*i)%m

When i=0

Index = (7+7*0)%10 = 7

When i=1

Index = (7+7*1)%10 = 4

o Since the location 4 is empty; therefore, the key 12 is inserted at the index 4.

 The final hash table would be:

231

Types of Hash functions

There are many hash functions that use numeric or alphanumeric keys. This article

focuses on discussing different hash functions:

1. Division Method.

2. Mid Square Method.

3. Folding Method.

4. Digit Analysis.

Let’s begin discussing these methods in detail.

1. Division Method:

This is the most simple and easiest method to generate a hash value. The hash

function divides the value k by M and then uses the remainder obtained.

Formula:

h(K) = k mod M

Here,

k is the key value, and

M is the size of the hash table.

It is best suited that M is a prime number as that can make sure the keys are more

uniformly distributed. The hash function is dependent upon the remainder of a

division.

232

Example:

k = 12345

M = 95

h(12345) = 12345 mod 95

 = 90

k = 1276

M = 11

h(1276) = 1276 mod 11

 =

Pros:

1. This method is quite good for any value of M.

2. The division method is very fast since it requires only a single division

operation.

Cons:

1. This method leads to poor performance since consecutive keys map to

consecutive hash values in the hash table.

2. Sometimes extra care should be taken to chose value of M.

2. Mid Square Method:

The mid square method is a very good hashing method. It involves two steps to

compute the hash value-

1. Square the value of the key k i.e. k2

233

2. Extract the middle r digits as the hash value.

Formula:

h(K) = h(k x k)

Here,

k is the key value.

The value of r can be decided based on the size of the table.

Example:

Suppose the hash table has 100 memory locations. So r = 2 because two digits are

required to map the key to the memory location.

k = 60

k x k = 60 x 60

 = 3600

h(60) = 60

The hash value obtained is 60

Pros:

1. The performance of this method is good as most or all digits of the key value

contribute to the result. This is because all digits in the key contribute to

generating the middle digits of the squared result.

2. The result is not dominated by the distribution of the top digit or bottom

digit of the original key value.

234

Cons:

1. The size of the key is one of the limitations of this method, as the key is of

big size then its square will double the number of digits.

2. Another disadvantage is that there will be collisions but we can try to reduce

collisions.

3. Digit Folding Method:

This method involves two steps:

1. Divide the key-value k into a number of parts i.e. k1, k2, k3,….,kn, where

each part has the same number of digits except for the last part that can have

lesser digits than the other parts.

2. Add the individual parts. The hash value is obtained by ignoring the last

carry if any.

Formula:

k = k1, k2, k3, k4, ….., kn

s = k1+ k2 + k3 + k4 +….+ kn

h(K)= s

Here,

s is obtained by adding the parts of the key k

Example:

k = 12345

k1 = 12, k2 = 34, k3 = 5

235

s = k1 + k2 + k3

 = 12 + 34 + 5

 = 51

h(K) = 51

Note:

The number of digits in each part varies depending upon the size of the hash table.

Suppose for example the size of the hash table is 100, then each part must have two

digits except for the last part that can have a lesser number of digits.

4. Digit Analysis:

 The last method we will examine, digit analysis, is used with static files. A

static file is one in which all the identifiers are known in advance.

 Using this method, we first transform the identifiers into numbers using some

radix, r.

 We then examine the digits of each identifier, deleting those digits that have

the most skewed distributions. We continue deleting digits until the number

of remaining digits is small enough to give an address in the range of the hash

table.

 The digits used to calculate the hash address must be the same for all

identifiers and must not have abnormally high peaks or valleys (the standard

deviation must be small).

 In general, a hash function is one that accepts an input of arbitrary length and

distribution and transforms it (typically via a technique that non-recoverably

discards information) into an output that is of fixed size and evenly

distributed.

236

 So (for example), if our inputs were 1938m, 3391i, 3091b, 4903a, 4930a,

6573b, and 4891c, we analyze the digits: there are three 1s, six 9s, seven 3s,

two 8s, one m, one i, three 0s, two bs, three 4s, two as, one 6, one 5, one 7,

and one c.

 So we might decide to eliminate 1, 8, m, i, 0, b, 4, a, 6, 5, 7 and c from the

inputs to produce 93, 339, 39, 93, 93, 3, 9.

 Let’s further say we only want a one-character hash, so we take only the first

character: 9, 3, 3, 9, 9, 3, 9. We now have a hash function that hashes these

seven identifiers more-or-less evenly into one of two buckets.

OVERFLOW CONDITION IN HASHING

 An overflow occurs at the time of the home bucket for a new pair (key,

element) is full. There are two methods for detecting collisions and overflows

in a static hash table; each method using different data structure to represent

the hash table.

Two Methods:

Linear Open Addressing (Linear probing)

Chaining

 Open addressing is performed to ensure that all elements are stored directly

into the hash table, thus it attempts to resolve collisions implementing various

methods.

 Linear Probing is performed to resolve collisions by placing the data into the

next open slot in the table.

237

CONTENT BEYOND SYLLABUS

AVL Tree

AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree is

named AVL in honour of its inventors.

AVL Tree can be defined as height balanced binary search tree in which each node

is associated with a balance factor which is calculated by subtracting the height of

its right sub-tree from that of its left sub-tree.

Tree is said to be balanced if balance factor of each node is in between -1 to 1,

otherwise, the tree will be unbalanced and need to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))

If balance factor of any node is 1, it means that the left sub-tree is one level higher

than the right sub-tree.

If balance factor of any node is 0, it means that the left sub-tree and right sub-tree

contain equal height.

If balance factor of any node is -1, it means that the left sub-tree is one level lower

than the right sub-tree.

An AVL tree is given in the following figure. We can see that, balance factor

associated with each node is in between -1 and +1. therefore, it is an example of

AVL tree.

238

Complexity

Algorithm Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Insert o(log n) o(log n)

Delete o(log n) o(log n)

239

Operations on AVL tree

Due to the fact that, AVL tree is also a binary search tree therefore, all the operations

are performed in the same way as they are performed in a binary search tree.

Searching and traversing do not lead to the violation in property of AVL tree.

However, insertion and deletion are the operations which can violate this property

and therefore, they need to be revisited.

SN Operation Description

1 Insertion Insertion in AVL tree is performed in the same way as it is performed in a

binary search tree. However, it may lead to violation in the AVL tree property

and therefore the tree may need balancing. The tree can be balanced by

applying rotations.

2 Deletion Deletion can also be performed in the same way as it is performed in a binary

search tree. Deletion may also disturb the balance of the tree therefore,

various types of rotations are used to rebalance the tree.

Why AVL Tree?

AVL tree controls the height of the binary search tree by not letting it to be skewed.

The time taken for all operations in a binary search tree of height h is O(h). However,

it can be extended to O(n) if the BST becomes skewed (i.e. worst case). By limiting

this height to log n, AVL tree imposes an upper bound on each operation to be O(log

n) where n is the number of nodes.

AVL Rotations

We perform rotation in AVL tree only in case if Balance Factor is other than -1, 0,

and 1. There are basically four types of rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of left subtree of A

2. R R rotation : Inserted node is in the right subtree of right subtree of A

3. L R rotation : Inserted node is in the right subtree of left subtree of A

4. R L rotation : Inserted node is in the left subtree of right subtree of A

https://www.javatpoint.com/insertion-in-avl-tree
https://www.javatpoint.com/deletion-in-avl-tree

240

Where node A is the node whose balance Factor is other than -1, 0, 1.

The first two rotations LL and RR are single rotations and the next two rotations LR

and RL are double rotations. For a tree to be unbalanced, minimum height must be

at least 2, Let us understand each rotation

1. RR Rotation

When BST becomes unbalanced, due to a node is inserted into the right subtree of

the right subtree of A, then we perform RR rotation, RR rotation is an anticlockwise

rotation, which is applied on the edge below a node having balance factor -2

In above example, node A has balance factor -2 because a node C is inserted in the

right subtree of A right subtree. We perform the RR rotation on the edge below A.

2. LL Rotation

When BST becomes unbalanced, due to a node is inserted into the left subtree of the

left subtree of C, then we perform LL rotation, LL rotation is clockwise rotation,

which is applied on the edge below a node having balance factor 2.

https://www.javatpoint.com/rr-rotation-in-avl-tree
https://www.javatpoint.com/ll-rotation-in-avl-tree

241

In above example, node C has balance factor 2 because a node A is inserted in the

left subtree of C left subtree. We perform the LL rotation on the edge below A.

3. LR Rotation

Double rotations are bit tougher than single rotation which has already explained

above. LR rotation = RR rotation + LL rotation, i.e., first RR rotation is performed

on subtree and then LL rotation is performed on full tree, by full tree we mean the

first node from the path of inserted node whose balance factor is other than -1, 0, or

1.

Let us understand each and every step very clearly:

State Action

A node B has been inserted into the right subtree of A the left subtree of C,

because of which C has become an unbalanced node having balance factor 2.

This case is L R rotation where: Inserted node is in the right subtree of left

subtree of C

As LR rotation = RR + LL rotation, hence RR (anticlockwise) on subtree

rooted at A is performed first. By doing RR rotation, node A, has become the

left subtree of B.

242

After performing RR rotation, node C is still unbalanced, i.e., having balance

factor 2, as inserted node A is in the left of left of C

Now we perform LL clockwise rotation on full tree, i.e. on node C. node C has

now become the right subtree of node B, A is left subtree of B

Balance factor of each node is now either -1, 0, or 1, i.e. BST is balanced now.

4. RL Rotation

As already discussed, that double rotations are bit tougher than single rotation which

has already explained above. R L rotation = LL rotation + RR rotation, i.e., first LL

rotation is performed on subtree and then RR rotation is performed on full tree, by

full tree we mean the first node from the path of inserted node whose balance factor

is other than -1, 0, or 1.

State Action

https://www.javatpoint.com/rl-rotation-in-avl-tree

243

A node B has been inserted into the left subtree of C the right subtree of A,

because of which A has become an unbalanced node having balance factor -

2. This case is RL rotation where: Inserted node is in the left subtree of right

subtree of A

As RL rotation = LL rotation + RR rotation, hence, LL (clockwise) on subtree

rooted at C is performed first. By doing RR rotation, node C has become the

right subtree of B.

After performing LL rotation, node A is still unbalanced, i.e. having balance

factor -2, which is because of the right-subtree of the right-subtree node A.

Now we perform RR rotation (anticlockwise rotation) on full tree, i.e. on node

A. node C has now become the right subtree of node B, and node A has

become the left subtree of B.

244

Balance factor of each node is now either -1, 0, or 1, i.e., BST is balanced

now.

Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

On inserting the above elements, especially in the case of H, the BST becomes

unbalanced as the Balance Factor of H is -2. Since the BST is right-skewed, we will

perform RR Rotation on node H.

The resultant balance tree is:

245

2. Insert B, A

On inserting the above elements, especially in case of A, the BST becomes

unbalanced as the Balance Factor of H and I is 2, we consider the first node from the

last inserted node i.e. H. Since the BST from H is left-skewed, we will perform LL

Rotation on node H.

The resultant balance tree is:

246

3. Insert E

247

On inserting E, BST becomes unbalanced as the Balance Factor of I is 2, since if we

travel from E to I we find that it is inserted in the left subtree of right subtree of I,

we will perform LR Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

248

4. Insert C, F, D

249

On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H is

-2, since if we travel from D to B we find that it is inserted in the right subtree of left

subtree of B, we will perform RL Rotation on node I. RL = LL + RR rotation.

4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

250

4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

5. Insert G

251

On inserting G, BST become unbalanced as the Balance Factor of H is 2, since if we

travel from G to H, we find that it is inserted in the left subtree of right subtree of H,

we will perform LR Rotation on node I. LR = RR + LL rotation.

5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

252

5 b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

6. Insert K

253

On inserting K, BST becomes unbalanced as the Balance Factor of I is -2. Since the

BST is right-skewed from I to K, hence we will perform RR Rotation on the node I.

The resultant balanced tree after RR rotation is:

7. Insert L

On inserting the L tree is still balanced as the Balance Factor of each node is now

either, -1, 0, +1. Hence the tree is a Balanced AVL tree

254

B Tree

B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree

of order m can have at most m-1 keys and m children. One of the main reason of

using B tree is its capability to store large number of keys in a single node and large

key values by keeping the height of the tree relatively small.

A B tree of order m contains all the properties of an M way tree. In addition, it

contains the following properties.

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at least

m/2 children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each

node must have m/2 number of nodes.

B+ Tree

B+ Tree is an extension of B Tree which allows efficient insertion, deletion and

search operations.

In B Tree, Keys and records both can be stored in the internal as well as leaf nodes.

Whereas, in B+ tree, records (data) can only be stored on the leaf nodes while

internal nodes can only store the key values.

The leaf nodes of a B+ tree are linked together in the form of a singly linked lists to

make the search queries more efficient.

B+ Tree are used to store the large amount of data which can not be stored in the

main memory. Due to the fact that, size of main memory is always limited, the

internal nodes (keys to access records) of the B+ tree are stored in the main memory

whereas, leaf nodes are stored in the secondary memory.

Advantages of B+ Tree

1. Records can be fetched in equal number of disk accesses.

2. Height of the tree remains balanced and less as compare to B tree.

255

3. We can access the data stored in a B+ tree sequentially as well as directly.

4. Keys are used for indexing.

5. Faster search queries as the data is stored only on the leaf nodes.

